FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 174 dotazů obsahujících »tlak«

157) Princip chladničky01. 10. 2002

Dotaz: 1. Chtěl bych vás požádat o zjednodušené vysvětlení fukce ledničky (co se kdy děje s médiem, které se k chlazení používá ). 2. Proč opisuje duha kružnici (pokud je to tedy přesná kružnice)? 3. Na jekém principu funguje obyčejný komín, který táhne i když se pod ním netopí. (Jiří Salfický)

Odpověď: Milý Jirí, chladnicka je tepelný stroj, který využívá cyklické stlacování a rozpínání plynu. Cím více plyn stlacíme, tím více se zahreje a predá více tepla do okolí. Pri rozpínání do puvodního stavu se naopak ochladí. Stlacování plynu probíhá mimo skrín lednicky a rozpínání uvnitr. Když si sáhnete na zadní stenu chladnicky, je tam trubicka v mrížce, která pekne hreje. Aby chladnicka dobre chladila, nesmí stlacený plyn zustat horký. Proto zadní cást chladnicky nezakrýváme, abychom umožnili ochlazování mrížky proudícím vzduchem.
Cásti chladnicky (obrázek dodám): 1. kompresor - pumpa, která stlacuje chladící látku, ta se pritom ohrívá. 2. kondenzátor - potrubí, kde se zahráté chladivo okolním vzduchem ochlazuje a zkapalnuje. 3. úzká trubicka - škrtí proud chladiva deroucího se pod tlakem z kondenzátoru do výparníku. 4. výparník - je potrubí, v nemž chladivo vre, rozpíná se a ochlazuje. Toto potrubí je omotané kolem krabice, ve které je v lednicce nejvíce zima.
Dríve se používaly v chladnickách jako chladivo freony, ty ale poškozují ozonovou vrstvu kolem Zeme, proto se dnes již nepoužívají. Pro teploty chlazení v rozmezí -25°C až 5°C se používají speciální plyny. Ty pri rozpínání ve výparníku (pri teplote asi -25°C) vrou a pri stlacování v kondenzátoru (pri teplote asi 55°C) zkapalnují.
Zajímavost: První chladnicka byla zhotovena v roce 1834.

Na další dva dotazy naleznete odpoved níže ve starších dotazech Odpovedny.

(M.Urbanová)   >>>  

158) Označení fyzikálních veličin25. 09. 2002

Dotaz: Proč jsou fyzikální veličiny označovány písmeny, která neodpovídají názvům např.rychlost v, čas t, síla F, tlak p apod.? (Zlatu±e Janovská)

Odpověď: Milá Zlatuše, zkratky fyzikálních velicin pocházejí z anglictiny, rychlost - velocity - v, cas - time - t, síla - force - F, tlak - pressure - p, hmotnost - mass - m, zrychlení - acceleration - a, atd. Pokud Vám budou vrtat hlavou další zkratky, dejte nám vedet.
(M.Urbanová)   >>>  

159) Tlak v pneumatikách19. 09. 2002

Dotaz: Prozraďte mi prosím, jestli v pneumatice stoupne tlak po nasazení na auto. (David Kiršner)

Odpověď: Experimentálne jsem to nezkoumal, ale rekl bych, že po prostém nasazení, když je auto ješte na zvedáku, nevidím, proc by se tlak mel zvýšit. Když si auto na pneumatiku sedne, pak je nejakým zpusobem deformována a tlak se v ní muže o trochu zvýšit. Závisí na konstrukci pneumatiky, o kolik. Když pak auto pojede, pneumatiky i vzduch se zahrívají a tlak vzroste.
(J.Dolejší)   >>>  

160) Terestrická refrakce12. 08. 2002

Dotaz: Jaký vliv má terestrická refrakce na průběh paprsku např. mezi dvěma značně vzdálenými horami o stejné nadmořské výšce mezi nimiž je volný prostor? Zakřivením země probíhá paprsek z řidšího prostředí do hustšího a opět do řidšího! (Václav Šustr)

Odpověď: Myslím, že uvažujete zcela správně. Optické vlastnosti vzduchu - index lomu - samozřejmě závisejí na teplotě a tlaku, které ovlivňují jeho hustotu. Při řešení tvaru dráhy by jistě bylo výhodné i pro odhad, i pro přesnější vytvoření modelu využít Fermatova principu - světlo se mezi dvěma danými body šíří po takové trajektorii, aby ji proběhlo za nejkratší dobu. Bylo by zajímavé o tom konsultovat geodety, kteří asi nejspíš s tím přijdou do styku ve své praxi.
(J.Obdržálek)   >>>  

161) Kapilarita,...16. 07. 2002

Dotaz: Co to je kapilární elevace, Franck-Herzův pokus, Millicanův pokus a akcelerace. (Vladka Haragova)

Odpověď: 1. Kapilární elevace - Kapilarita je jev, který vzniká v kapilárách (tenkých trubičkách) jako důsledek zakřivení povrchu kapalin a vzniku kapilárního tlaku. U kapalin, které smáčejí stěny kapiláry vzniká s dutým povrchem výslednice směrem ven z kapaliny. To má za následek, že v kapiláře vystoupí kapalina do takové výšky h, až hydrostatický tlak sloupce h vyrovná kapilární tlak - jde o kapilární elevaci. Pro vypuklý povrch a nesmáčející kapalinu směřuje výslednice dovnitř kapaliny, takže sloupec se sníží o h - kapilární deprese. Podívejte se na obrázek.

2. Millikan v roce 1909 přímou metodou změřil velikost elementárního náboje (e = 1,602 . 10-19 C). Určil ji porovnáním sil, kterými působí elektrostatické a gravitační pole na malá nabitá tělíska. Mezi desky kondenzátoru byly vstřikovány olejové kapičky a mikroskopem sledován jejich vertikální pohyb v přítomnosti elektrického pole a bez něho. Uspořádání pokusu můžete vidět na obrázku.
3. Franck-Hertzův pokus (1914) - myšlenka jejich pokusu spočívá v tom, že atomy zředěného plynu se ostřelují elektrony s rychlostmi 105 m.s-1. Při tom dochází k pružným nebo nepružným srážkám s atomy plynu. Z jejich pokusu vyplynulo, že při rychlostech elektronů menších než kritická rychlost dochází k pružným srážkám s atomy plynu. Elektron neodevzdá atomu svoji energii, ale odrazí se od něho (změní se jen směr jeho rychlosti). Pokud elektrony dosáhnou jisté kritické rychlosti (různé pro různé látky), nastane srážka nepružná. Elektron odevzdá svoji energii atomu, který přitom přejde do jiného stacionárního stavu s vyšší energií. Atom tedy buď vůbec nepřijímá energii (pružná srážka), nebo ji přijímá jen v kvantech rovných rozdílu energií dvou stacionárních stavů.Ve svém pokusu ukázali, že pokud energie elektronů nedosáhne jistou kritickou hodnotu, nastávají jen pružné srážky elektronů s atomy plynu. Uspořádání jejich pokus můžete vidět na
obrázku.
4. Akcelerace = zrychlení. Mění-li se vektor rychlosti, říkáme, že se těleso pohybuje se zrychlením. Zrychlení jako fyzikální veličinu značíme a, jeho jednotkou je m.s-2.

(M.Urbanová)   >>>