FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 174 dotazů obsahujících »tlak«

158) Označení fyzikálních veličin25. 09. 2002

Dotaz: Proč jsou fyzikální veličiny označovány písmeny, která neodpovídají názvům např.rychlost v, čas t, síla F, tlak p apod.? (Zlatu±e Janovská)

Odpověď: Milá Zlatuše, zkratky fyzikálních velicin pocházejí z anglictiny, rychlost - velocity - v, cas - time - t, síla - force - F, tlak - pressure - p, hmotnost - mass - m, zrychlení - acceleration - a, atd. Pokud Vám budou vrtat hlavou další zkratky, dejte nám vedet.
(M.Urbanová)   >>>  

159) Tlak v pneumatikách19. 09. 2002

Dotaz: Prozraďte mi prosím, jestli v pneumatice stoupne tlak po nasazení na auto. (David Kiršner)

Odpověď: Experimentálne jsem to nezkoumal, ale rekl bych, že po prostém nasazení, když je auto ješte na zvedáku, nevidím, proc by se tlak mel zvýšit. Když si auto na pneumatiku sedne, pak je nejakým zpusobem deformována a tlak se v ní muže o trochu zvýšit. Závisí na konstrukci pneumatiky, o kolik. Když pak auto pojede, pneumatiky i vzduch se zahrívají a tlak vzroste.
(J.Dolejší)   >>>  

160) Terestrická refrakce12. 08. 2002

Dotaz: Jaký vliv má terestrická refrakce na průběh paprsku např. mezi dvěma značně vzdálenými horami o stejné nadmořské výšce mezi nimiž je volný prostor? Zakřivením země probíhá paprsek z řidšího prostředí do hustšího a opět do řidšího! (Václav Šustr)

Odpověď: Myslím, že uvažujete zcela správně. Optické vlastnosti vzduchu - index lomu - samozřejmě závisejí na teplotě a tlaku, které ovlivňují jeho hustotu. Při řešení tvaru dráhy by jistě bylo výhodné i pro odhad, i pro přesnější vytvoření modelu využít Fermatova principu - světlo se mezi dvěma danými body šíří po takové trajektorii, aby ji proběhlo za nejkratší dobu. Bylo by zajímavé o tom konsultovat geodety, kteří asi nejspíš s tím přijdou do styku ve své praxi.
(J.Obdržálek)   >>>  

161) Kapilarita,...16. 07. 2002

Dotaz: Co to je kapilární elevace, Franck-Herzův pokus, Millicanův pokus a akcelerace. (Vladka Haragova)

Odpověď: 1. Kapilární elevace - Kapilarita je jev, který vzniká v kapilárách (tenkých trubičkách) jako důsledek zakřivení povrchu kapalin a vzniku kapilárního tlaku. U kapalin, které smáčejí stěny kapiláry vzniká s dutým povrchem výslednice směrem ven z kapaliny. To má za následek, že v kapiláře vystoupí kapalina do takové výšky h, až hydrostatický tlak sloupce h vyrovná kapilární tlak - jde o kapilární elevaci. Pro vypuklý povrch a nesmáčející kapalinu směřuje výslednice dovnitř kapaliny, takže sloupec se sníží o h - kapilární deprese. Podívejte se na obrázek.

2. Millikan v roce 1909 přímou metodou změřil velikost elementárního náboje (e = 1,602 . 10-19 C). Určil ji porovnáním sil, kterými působí elektrostatické a gravitační pole na malá nabitá tělíska. Mezi desky kondenzátoru byly vstřikovány olejové kapičky a mikroskopem sledován jejich vertikální pohyb v přítomnosti elektrického pole a bez něho. Uspořádání pokusu můžete vidět na obrázku.
3. Franck-Hertzův pokus (1914) - myšlenka jejich pokusu spočívá v tom, že atomy zředěného plynu se ostřelují elektrony s rychlostmi 105 m.s-1. Při tom dochází k pružným nebo nepružným srážkám s atomy plynu. Z jejich pokusu vyplynulo, že při rychlostech elektronů menších než kritická rychlost dochází k pružným srážkám s atomy plynu. Elektron neodevzdá atomu svoji energii, ale odrazí se od něho (změní se jen směr jeho rychlosti). Pokud elektrony dosáhnou jisté kritické rychlosti (různé pro různé látky), nastane srážka nepružná. Elektron odevzdá svoji energii atomu, který přitom přejde do jiného stacionárního stavu s vyšší energií. Atom tedy buď vůbec nepřijímá energii (pružná srážka), nebo ji přijímá jen v kvantech rovných rozdílu energií dvou stacionárních stavů.Ve svém pokusu ukázali, že pokud energie elektronů nedosáhne jistou kritickou hodnotu, nastávají jen pružné srážky elektronů s atomy plynu. Uspořádání jejich pokus můžete vidět na
obrázku.
4. Akcelerace = zrychlení. Mění-li se vektor rychlosti, říkáme, že se těleso pohybuje se zrychlením. Zrychlení jako fyzikální veličinu značíme a, jeho jednotkou je m.s-2.

(M.Urbanová)   >>>  

162) Vodík v "kovovém stavu"12. 07. 2002

Dotaz: 1.Slyšel jsem, že na Jupiteru existuje vodík v "kovovém stavu" . Jaké má vlastnosti a co to vlastně je? 2. Šel by udělat "podomácku" laser-jak? 3. Viděl jsem v noci, jak blesk uhodil do vysokonapěťového transformátoru a po chvilce se kolem transfornátoru objevila modrá světélkující mlha, která se asi 10min pohybovala od transformátoru a pak pomalu zanikla. Co to bylo a na jakém to je principu? (Merek)

Odpověď: 1. Nevím, zda zrovna na Jupiteru je a proč se soudí, že by tam pro něj byly vhodné podmínky. "Vodík v kovovém stavu" je docela lákavá představa založená na tom, že vodík je ve stejném sloupci jako alkalické kovy. "Obvyklý" ztužený vodík (ochlazením, resp. za mírně zvýšených tlaků) je ale izolátor složený z molekul H2 držících spolu van der Waalsovými silami, nikoli vodič. Lze si ale představit, že za hodně vysokého tlaku by mohla existovat kovová vazba.
2. Koupit si vhodné zařízení, např. laserové ukazovátko (na trhu od 100 Kč) anebo v obchodu se součástkami polovodičovou laserovou diodu. Jde o to, k čemu ten laser potřebujete. 
3. Zřejmě tam došlo k ionizaci vzduchu, eventuálně k tvorbě metastabilních radikálů. To, že šlo právě o vysokonapěťový transformátor, se mi ani nezdá podstatné tak, jako to, že do (kovové konstrukce) uhodilo.
(J.Obdržálek)   >>>