FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 174 dotazů obsahujících »tlak«

169) Komínový efekt27. 05. 2002

Dotaz: Jak funguje komínový efekt? Proč komín táhne vzduch vzhůru, i když není (třeba v kamnech) zatopeno? Proč nefunguje normální cirkulace vzduchu jako je to mimo komínů, resp. proč je to tak markantní? (Dave Čandra)

Odpověď: Vyzkoušejte si to na jednoduchém pokusu: Vezměte alobal a naviňte ho ve dvou nebo třech vrstvách například na trubku od vysavače. Vzniklou trubici vytvarujte opatrně podle obrázku. Potom zapalte svíčku a vnitřek trubice zahřejte plamenem svíčky, jak vidíte na obrázku. Asi po 10 sekundách dejte trubici spodním otvorem vedle plamene svíčky. Pozorujte, co se s ním děje.
Dokud byla uvnitř komína teplota vzduchu stejná jako všude kolem, plamen svíčky směřoval nahoru. Jakmile se vzduch uvnitř ohřál a začal proudit komínem, strhával plamen svíčky s sebou. Tím se v komínu udržovala vyšší teplota a proudění vzduchu.
Pokud je vzduch v komínu zahřátý, strhává plamen. Proto krb i kamna správně fungují teprve tehdy, když je komín již zahřátý! Ucpěte komín nahoře rukou a pozorujte, co dělá plamen. Zkuste nyní na okamžik vzdálit komín od plamene a pak ho zase přibližte zpět. Co pozorujete? Jakmile ucpete komín nebo ho vzdálíte od svíčky, plamen se zase srovná a míří směrem vzhůru. Když potom otvor uvolníte nebo dáte komín zase zpět, plamen opět zamíří dovnitř.
(MU - 27.5.2002)

Je-li v kamnech zatopeno, pak horký vzduch (při stejném množství) zaujímá větší objem, a je tedy lehčí, porovnává-li se to na objem. Proto stoupá vzhůru. I když není zatopeno, ale když je ve výšce ústí komína vítr, pak se nasává vzduch z komína podle Bernoulliho rovnice: v proudové trubici rovnoběžné se Zemí a dotýkající se ústí komína je vyšší vodorovná složka rychlosti vzduchu (oproti nulové v komíně) spjata s menším tlakem, a tím se z komína vzduch vysává. Není-li právě vítr, pak ještě chvilku proudí vzduch setrvačností, ale přestane, a komín "netáhne".(JO - 27.5.2002)

(M. Urbanová, J. Obdržálek)   >>>  

170) Newtonovy zákony21. 05. 2002

Dotaz: Prosím Vás o zaslání definicí Newtonových zákonů a asi dalších tří, které máme znát ze základní školy. (Nikola Šrainová)

Odpověď: I.N.Z.- zákon setrvačnosti - každé těleso zůstává v klidu nebo v pohybu rovnoměrném přímočarém, není-li vnějšími silami nuceno tento stav změnit. Jinak řečeno - je-li výslednice sil působící na těleso nulová, nemění těleso svou rychlost, pohybuje se rovnoměrně přímočaře nebo je v klidu. Síla je nutná ke změně velikosti či směru rychlosti nikoli k pohybu samotnému.
II.N.Z.- zákon síly - "Když síla, tak zrychlení". Velikost síly, která uděluje tělesu zrychlení, je přímo úměrná hmotnosti tělesa a jeho zrychlení. F = m.a
III.N.Z.- zákon akce a reakce - "Já na bráchu, brácha na mě" - síly, kterými na svebe působí navzájem dvě tělesa, mají stejnou velikost, ale opačný směr. Současně vznikají i zanikají. Protože působí na různá tělesa, jejich účinky se neruší.
Nevím, jaké další zákony potřebujete, lepší by bylo upřesnit je.
Archimédův zákon - těleso ponořené do kapaliny je nadlehčováno vztlakovou silou, jejíž velikost je rovna tíze kapaliny o stejném objemu jako má ponořená část tělesa.
Pacalův zákon - působí-li vnější síla o velikosti F na rovnou plochu obsahu S povrchu uzavřeného objemu kapaliny, vznikne v kapalině tlak, který je ve všech místech kapaliny stejný p = F/S.
Ohmův zákon - pro elektrický obvod. U=R.I, kde U je napětí na odporu R a I je proud, kterým rezistorem protéká. Bližší informace najdete v Odpovědně.
(M.Urbanová)   >>>  

171) Hydraulika20. 05. 2002

Dotaz: Zajímavosti o hydraulice, hydraulickém zařízení i všeobecně. Potřeboval bych vysvětlit, jak se vypočítá daný příklad. (Pavel Dvořák)

Odpověď: Hydraulická zařízení jsou založena na přenosu síly kapalinou, přičemž lze vhodnou volbou S1, S2 změnit velikost tlakové síly. Pokud potřebujete spočítat nějaký příklad použijte jednoduchý vzorec F2/F1 = S2/S1, ale F1h1 = F2h2. Viz. obrázek. V praxi se používají hydraulické brzdy, hydraulicky lis, kovací lis, tlakový spínač i zubařské křeslo je založeno na stejném principu. Nebo se můžete podívat na web a vybrat si některý ze zajímavých článků, stačí do webovského vyhledávače napsat příslušné heslo, které vás zajímá.
(M.Urbanová)   >>>  

172) Rychlost zvuku 115. 03. 2002

Dotaz: Zajímalo by me, zda by se zvuk ve vzduchu (při dostatečně vysoké teplotě) mohl pohybovat rychlostí třeba 3x,5x, 100x větší než normálních 340 m/s. (pavel Šíma)

Odpověď: Zvuk jsou vlny v nějakém prostředí a rychlost zvuku je dána právě vlastnostmi tohoto prostředí. V tabulkách můžete najít hodnoty rychlosti zvuku pro různá prostředí (nejrychlejší je zvuk v pevných látkách, např. ve skle má rychlost 5200 m/s), i pro různé teploty vzduchu (např. největší udaná hodnota v = 557 m/s při 500° C).
Rychlost zvuku ve vzduchu závisí na složení vzduchu (nečistoty, vlhkost apod.), ale nejvíce na jeho teplotě. Ve vzduchu o teplotě t [°C] má zvuk rychlost : v = 331,82 + 0,61 t (odtud si můžete vypočítat, jak vysoká teplota odpovídá Vámi požadovanému zvýšení rychlosti). Rychlost zvuku není ovlivněna tlakem vzduchu a je stejná pro zvuková vlnění všech frekvencí. Na webu můžete najít spoustu zajímavých článků, stačí do vyhledávače napsat klíčové slovo "rychlost zvuku" resp. "speed of sound" např.http://otokar.troja.mff.cuni.cz/vyuka/sylaby/OFY016/F2001/MRKVA.DOC
Tato teplotní závislost ovšem platí jen v určitém intervalu teplot. Jaká bude rychlost zvuku při hodně vysokých teplotách, kdy místo plynu bude plasma? Tak na tuto otázku odpověď bohužel ještě nevím. Dodám ji co nejdříve!
(M. Urbanová)   >>>  

173) Rychlost zvuku10. 12. 2001

Dotaz: Kamarád se mě ptal, jaká je rychlost zvuku ve výšce 11 km. Nemám po ruce tabulky (ani nevím, zda by to tam bylo), tak jsem hledal na Internetu - (zatím) neúspěšně. Našel jsem jiné zajímavé věci, ale ne rychlost zvuku ve výšce 11 km. Není můj dotaz příliš primitivní? (Michal Pták)

Odpověď: Rychlost zvuku v libovolné látce závisí na její "tuhosti" (vyjádřené například modulem objemové pružnosti) a hustotě, čím je "tužší" materiál, tím rychleji se vrací jeho vychýlené částice zpět (zvuk je rychlejší), čím má větší hustotu, tím je vracení těžší a zvuk pomalejší. Konkrétně vzvuk = (-V/r dp/dV)^1/2 = (k p/r)^1/2 , pokud uvažujeme adiabatické změny tlaku a objemu ve zvukové vlně (při zvukových frekvencích se nestihne výměna tepla s okolím), k je Poissonova konstanta, která je pro dvouatomový plyn rovna 7/5. Takže výsledně vzvuk = (1,4 p/r)^1/2 .

Tabulka rychlostí zvuku ve vzduchu v různých výškách

Zdrojem byla tabulka "Tlak, teplota a hustota vzduchu v různých výškách" Z MFCH tabulek (h nadmořská výška, 1 mbar = 102 Pa)

h[m] p[mbar] r[kg/m3] v[m/s]
0 1000,0 1,210 340,2
1500 834,6 1,045 334,4
5000 533,0 0,727 320,4
9000 303,3 0,460 303,8
11000 223,2 0,359 295,0

Skoro žádný dotaz není primitivní. Bylo nám potěšením odpovídat.

(M. Urbanová, J. Dolejší)   >>>