FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 174 dotazů obsahujících »tlak«

39) Plyny v baňce žárovky16. 11. 2007

Dotaz: Mela bych dotaz, po jehoz odpovedi patram na netu uz delsi dobu. Hledala jsem informace o konstrukci zarovky. Pry byvaji plneny zredenymi plyny...vysvetleni bylo, ze pokud by byl v zarovce nezredeny plyn, tak by pri zahrati plynu rozzhavenym vlaknem doslo k roztrzeni banky zarovky. Jakto, ze ale nedojde k destrukci zarovky pred rozsvicenim, kdy je uvnitr nizsi tlak nez okolo? Chapu to dobre, ze za to muze vejcity tvar a ten odolava pretlaku zvenku (podobne jako skorapka vejce), ale neodolal by pretlaku zevnitr? A jaky je duvod pro plneni banky zredenym plynem místo vakua? Dekuji (Sarka)

Odpověď: Ano, tvar skleněné baňky žárovky skutečně lépe odolá přetlaku zvení než zevnitř. Navíc ale přetlak zvenku může být maximálne roven tlaku naší atmosféry (a je-li uvnitř alespoň trochu plynu, bude rozdíl menší). Zahřátím žárovky z 20 °C (teplota pokoje) na nějakých 3000 °C (teplota rozžhaveného vlákna žárovky) se uvnitř zvýší tlak až téměř desetkrát - pokud je na začátku malý, nic se nestane, pokud by ale už na začátku byl roven atmosférickému tlaku... následky jistě domyslíte sami.

Plnění baňky nějakým plynem (například argonem s příměsí jódu) zvyšuje její životnost. Rozžhavené vlákno žárovky totiž samovolně sublimuje (a uvolnběné atomy wolframu většinou zkondenzují na chladnější baňce), až je jednou tak ztenčené, že se přetaví, praskne. Přítomnost jódu v baňce způsobí, že jsou atomy wolframu zachytávány, utvoří se z nich plynný jodid a při vypnutí žárovky a chladnutí vlákna jich je pak část zase vyloučena zpět na vlákno. Takové (halogenové) žárovky pak tedy mají buď větší životnost nebo je můžeme nažhavit na vyšší teplotu (aniž bychom v krátké době zničili vlákno) a tedy více svítí.

(Jakub Jermář)   >>>  

40) Namrzání vozovky na mostě05. 11. 2007

Dotaz: Proč v zimě namrzají častěji mosty než zbylé části silnice? Myslela jsem si, že při proudění vzduchu pod mostem dojde ke snížení tlaku (podle Bernoulliovy rovnice) a pokles tlaku způsobí pokles teploty, ale to by muselo jít o izochoricky děj. To jsem zavrhla, proto se ptám, jaký je pravý důvod? (Jana)

Odpověď: Domnívám se, že za jevem stojí zejména dva faktory. Především vozovka na mostě promrzne dříve, než tatáž vozovka "na pevné zemi" prostě proto, že je ochlazována jak zvrchu, tak i zespodu (přičemž předpokládám, že most není tak tlustý, aby nepromrzl a vozovku zespodu dostatečně izoloval). Druhým faktorem pak bude skutečnost, že díky větru (který je na mostě pravděpodobně častější a intenzivnější než průměr v krajině krajině) zde dochází k rychlejší výměně studeného vzduchu a tím i rychlejšímu odvodu tepla prouděním.

(Jakub Jermář)   >>>  

41) Kde se ztratila setina (273,15 či 273,16 K)?05. 11. 2007

Dotaz: Proč je rovnovážnému stavu voda, led a nasycená pára přiřazena termodynamická teplota 273,16 K, ale při převodech na stupně celsia se používá vztah t = T - 273,15? Kam se poděla ta jedna setinka? Díky Honza (jan)

Odpověď: Nejde o zaokrouhlování, ale o dvě různé teploty. 273,16 K neboli 0,1°C je teplota trojného bodu vody, tedy teplota, při níž může zároveň existovat voda, led a nasycená vodní pára. Tato situace nastává při tlaku 610,6 Pa (což je pouhá 1/166 normálního tlaku, na nějž jsme zvyklí, tedy tlak velmi nízký). Tato teplota se používá dle mezinárodních dohod k definici termodynamické teplotní stupnice.

Teplota 273,15 neboli 0°C je teplota, při níž dochází za normálního tlaku k fázovému přechodu vody a ledu. I tato teplota bývala používána k definici některých teplotních stupnic, nejznámější z nich je Celsiova stupnice.

(Jakub Jermář)   >>>  

42) Další perpetuum mobile I. druhu18. 10. 2007

Dotaz: Dobrý den, delší dobu mne zaujala myšlenka s využitím naší gravitace pro výrobu el. energie. Bohužel to nedokáži spočítat a tím pádem si nejsem jistý zdali je možné tímto způsobem vyrobit zajímavé množství energie. Dotaz zní: máme-li dvě stejná tělesa o hmotnosti 100 kg. Jedno je ponořeno do hloubky 50m a jedno je vynořeno na hladině. Tělesa jsou přez dynamo spojena lanem. Dynamo je umístěno na hladině. Těleso má v sobě zabudovanou turbínu, kterou roztáčí průtok vody při ponoření a zároveň při vynoření. V okamžiku vynoření tělesa sepne komresor a z vytvořené energie načerpá do tlak. láhve stlačený vzduch. Těleso vynořené na hladině otevírá klapky a postupně se napouští vodou. Současně druhé - dole ponořené těleso uzavře klapky a napouští se stlačeným vzduchem. Způsob pohybu těles je obdobný u výtahu. Má otázka zní: může to fungovat a zároveň i vyrobit nepatrné množství energie z dynama? Předem děkuji za Vaší odpověd Ivo (Ivo)

Odpověď: Fungovat to nebude, na přečerpávání či kompresi spotřebujete více energie, než kolik by šlo dynamem vyrobit (ikdyby dynamo mělo 100% účinnost). Šlo by o klasickou ukázku perpetua mobile prvního druhu - stroje, který by dodával energii "z ničeho".

(Jakub Jermář)   >>>  

43) Molární objem plynu12. 10. 2007

Dotaz: Dobrý den, chtěla jsem se zeptat v jaké teplotě a tlaku mají plyny objem 22,4 litrů. Děkuji (Tranová Lili)

Odpověď: Objem plynu závisí na tlaku, teplotě a množství plynu. Předpokládám, že se zajímáte o objem 1 molu (6.1023 molekul nebo atomů) plynu - jinak bychom mohli říci, že správná odpověď zní: za jakýchkoli podmínek. Vždycky totiž můžeme vzít právě takové množství plynu, aby jeho objem byl 22,4 litru.

Hodnota 22,4 litru se objevuje v chemii jako tzv. molární objem. Je to objem jednoho molu ideálního plynu při teplotě 0 °C a při standardním (atmosférickém) tlaku 101 325 Pa, vypočtený ze stavové rovnice pro ideální plyn. Běžné plyny (kyslík, amoniak nebo třeba oxid uhličitý) nejsou sice "ideální", ale tuto hodnotu pro ně můžeme také používat.

Stavová rovnice ideálního plynu udává vztah mezi tlakem p, objemem V, látkovým množstvím plynu n (v molech), konstantou R (8,314 JK/mol) a teplotou T (vyjádřenou nikoli ve stupních Celsia, ale v kelvinech): p.V = R.n.T

Chceme-li, aby objem (V) jednoho molu plynu vyšel 22,4 litru (tedy 0,0224 m3), zbývají nám v rovnici stále ještě dvě proměnné k dosazení - teplota T a tlak p.

p . 0,0224 m3 = T . 1 mol . 8,314 JK/mol


Proto platí, že při libovolné teplotě, kterou si vymyslíme, můžeme dopočítat takový tlak, aby objem vyšel 22,4 litru. Jednou z možností je právě teplota 0 °C a tlak 101 325 Pa. Zvolíme-li jinou teplotu, například 100 °C (= 373,15 K), dopočítáme tlak 138 499 Pa - a při těchto podmínkách bude objem jednoho molu plynu taktéž 22,4 litru.

Můžeme tedy říci: při libovolné teplotě - zvolíme-li správný tlak - může mít jeden mol plynu objem 22,4 litru. A naopak, při libovolném tlaku - doplníme-li jej správnou teplotou - může mít jeden mol plynu objem 22,4 litru. Nejčastěji se ale setkáváme právě s dvojicí 0 °C a 101 325 Pa.

(Hanka Böhmová)   >>>