FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 174 dotazů obsahujících »tlak«

51) Nafta v plynném stavu17. 05. 2007

Dotaz: Dobrý den, může být nafta (vzhledem k velikosti molekul) v plynném skupenství? (Petr)

Odpověď: V plynném skupenství může být teoreticky, za vhodných podmínek, každá chemická látka, bez ohledu na velikost molekul - ta pouze ovlivňuje teplotu varu látky. I nafta, jako směs pevných a kapalných organických látek, může být teoreticky za dostatečně vysoké teploty v plynném skupenství. Problém je ovšem v teplotní nestálosti mnoha organických sloučenin - často se stává, že příslušnou látku nelze převést do plynného skupenství, protože se ještě před dosažením teploty varu rozloží. Pokud opravdu potřebujeme plynné skupenství (například při frakční destilaci ropy), pomáháme si závislostí teploty varu na tlaku. Snížením tlaku můžeme snížit teplotu varu až do oblasti, kde už tepelný rozklad nehrozí.

Pokud vás zajímá spíše vypařování z volného povrchu kapaliny za normální teploty, samozřejmě každá kapalina má svou tenzi par (tj. jakoby koncentraci molekul v plynném skupenství nad povrchem), ať už jakkoli nízkou, a stejně tak i nafta, resp. (protože jde o směs) každá její složka. Jednoduchým důkazem toho, že se nafta z povrchu vypařuje, je její zápach (kdyby se vám nemohla dostat na nosní sliznici, necítil byste ji). V porovnání s kratšími uhlovodíky (menší molekuly) je tenze par nafty relativně nízká:
  • motorová nafta méně než 100 Pa (podobně jako slunečnicový olej),
  • technický benzín 17 200 Pa (menší molekuly),
  • voda 2 300 Pa (velmi malé molekuly, ale velká polarita).

Vedle velikosti molekuly se uplatňuje také vliv mezimolekulových interakcí, které brání molekule vytrhnout se z kapaliny pryč do plynné fáze. Čím větší polarita látky, čím nabitější skupiny obsahuje, tím silnější interakce má s okolím a tím nižší je tenze její páry. Látky s vysokou polaritou - látky iontové (soli), byť i s velmi malými molekulami, se vyskytují za normálních podmínek v pevném skupenství a tenzi par mají zanedbatelnou.

(Hana Böhmová)   >>>  

52) Difuze plynů16. 05. 2007

Dotaz: Pokud uložím směs plynů vzniklých při elektrolýze vody do zásobníku, dojde časem k oddělení vodíku a kyslíku vzhledem k jejich rozdílné hmotnosti? (kenko)

Odpověď: Spíš naopak, nehomogenity vzniklé při míchání směsi se ještě difúzí vyrovnají. Každý plyn se bude v rovnováze v dobré aproximaci chovat tak, jako by byl v nádobě sám, a pokud neuvažujeme děsně velkou nádobu, ve které by byl znatelný úbytek tlaku s výškou, bude jejich poměr všude stejný. Situace, kdy plyn s větší hustotou má větší koncentraci u podlahy (například když napustíte do akvária CO2 z bombicek) je nerovnovážná a difuze ji dříve nebo později zruší. Podobně nerovnovážná situace je nad hrncem s vroucí vodou, tam je evidentně koncentrace vodní páry větší než o kousek vedle. Dovaříte-li však a počkáte, bude vlhkost vzduchu opět stejná v celé mísnosti.

Leccos zajímavého je například v heslech diffusion, partial pressure ... ve Wikipedii.

(Jiří Dolejší)   >>>  

53) Zahřívá Zemi radioaktivita?02. 05. 2007

Dotaz: Dobrý den! Naše Země (planeta) je pod povrchem žhavá. Uprostřed Země se nachází pevné kovové jádro, ve kterém dochází ke štěpným jaderným reakcím. Vznikajícím teplem, na asi 6000 K ohřáté okolí jádra, je již tekuté, doběla rozžhavené. Směrem k Zemskému povrchu teplota klesá a roztavené horniny začínají být plastické. Stejně jako u vody v čajové konvici, i v zemském nitru vznikají stoupající proudy roztaveného magmatu, deroucí se k Zemskému povrchu. Zajímalo by mě, jestli je magma a láva vyvrhovaná při sopečných erupcích, radioaktivní. Tekuté magma je přeci směs chemických prvků (sloučenin) ohřívaných Zemským jádrem, ve kterém dochází ke štěpným reakcím, obdobně jako v jaderném reaktoru. Předpokládám tedy existenci radiace Zemského jádra. Předpokládím proto alespoň sekundární radioaktivitu směsi chemických prvků (magmatu), s různými poločasy rozpadu, jádrem ozářených. Tak jak to je ve skutečnosti? Děkuji za Váš čas a jsem s pozdravem. (Vladimír Štěpnička)

Odpověď: Nedomníváme se, že by v Zemi docházelo ke štěpným reakcím podobného typu jako v jaderném reaktoru, protože nic nesvědčí pro to, že by se v Zemi nacházela dostatečná koncentrace nějakého štěpného materiálu. Přesto jsme přesvědčeni o vysokých teplotách zemského jádra (jen o trochu nižších než uvádíte v dotazu - na rozhraní jádro-plášť by mohla být teplota o něco nižší nebo srovnatelná s 4000 K, ve středu Země cca 5000 K).

Hlavní zdroj tepla v nitru Země je patrně dvojího původu:

  • gravitačního, kdy při vzniku Země došlo ke smrštění prapůvodního materiálu a odpovídající úbytek gravitační potenciální energie se přeměnil na teplo; není vyloučeno, že i v současnosti gravitační potenciální energie zemského tělesa poněkud klesá, pokud dochází ke gravitační diferenciaci materiálu (spekuluje se např. o možnosti, kdy se na rozhraní vnitřního a vnějšího jádra oddělují lehčí příměsi od železa). (Poznámka: Vnější jádro je tekuté.)

  • radioaktivního - materiál tvořící zemské těleso obsahuje i radioaktivní izotopy některých prvků, vylétávající částice alfa či beta mají určitou kinetickou energii, která se nakonec přemění na teplo - z hlediska energetického mají v současnosti význam hlavně izotopy U238, U235, Th232 a K40, jejichž poločasy rozpadu jsou řádově srovnatelné se stářím Země. O těchto izotopech se domníváme, že pocházejí z původního materiálu, z něhož vznikla Země, nebyly tedy vytvořeny v průběhu existence Země. Není vyloučeno, že v mladší Zemí hrála z energetického hlediska určitou roli i radioaktivita některých prvků s kratšími poločasy rozpadu, jejichž koncentrace je nyní zanedbatelná.

    Hovoříme-li tedy o radioaktivních prvcích v Zemi, mluvíme o tzv. přirozené radioaktivitě na rozdíl od umělé radioaktivity, která je (na Zemi) důsledkem technické činnosti jaderných zařízení. Otázka týkající se přirozené radioaktivity horkého magmatu souvisí s tzv. diferenciaci materiálu u zemského povrchu: Zemský plášť je plastický, nikoliv však tekutý, protože teplota tání tohoto materiálu značně závisí na tlaku a jen v oblasti nízkých tlaků u zemského povrchu nastává situace, kdy se horký materiál pláště začíná tavit, díky čemuž vzniká tekuté magma. Geochemici tvrdí, že "tendence" jednotlivých prvků vytvářet magma je značně variabilní a právě radioaktivní prvky, do něj "vstupují" snadno. Z magmatu nakonec vznikají jednotlivé minerály tvořící horniny kůry. Tento proces vede k tomu, že se ze zemského pláště postupně "odčerpávají" radioaktivní prvky, takže jejich koncentrace v kontinentální kůře je nyní mnohem vyšší než ve ("vyčerpaném") materiálu pláště.

    Jen pro zajímavost: cca 20 km vrstva žuly by byla schopna (díky vysokému obsahu radioaktivních prvků) produkovat tepelný tok, který je srovnatelný s průměrným tepelným tokem měřeným na povrchu kontinentu.

  • (Ctirad Matyska; redakčně upravil Jakub Jermář)   >>>  

    54) Mrznutí vody za vyšších tlaků11. 04. 2007

    Dotaz: Jak velký tlak vyvíjí voda, když zmrzne v těsném prostoru? (Václav Kadlec)

    Odpověď: Tento tlak je obrovský. Jeho velikost můžeme odhadnout ze závislosti teploty tuhnutí vody na tlaku. Při atmosférickém tlaku je tato teplota 0 °C, při tlaku stokrát větším je asi -1 °C, při tlaku dvou tisíc atmosfér je to asi -20 °C. To znamená, že při tlaku 2000 atmosfér se začne led tvořit až při teplotě nižší než 20 °C pod nulou, při vyšších teplotách zůstává voda v kapalném skupenství.

    Pokud vodu budeme chladit, ale nedovolíme jí zvýšit při krystalizaci v led svůj objem, bude se zvyšovat její tlak až k takové hodnotě, kdy při dané teplotě může voda stále ještě být v kapalném skupenství - pro teplotu -1 °C je to přibližně 100 atmosfér, pro -20 °C je tento tlak okolo 2000 atmosfér.

    (Pavel Böhm)   >>>  

    55) Sytá vodní pára16. 02. 2007

    Dotaz: Dobrý den, máme dvě nádoby stejného objemu, ve kterých je voda, rovněž stejného objemu (přičemž voda nezabírá celý objem nádoby). V jedné nádobě je nad hladinou vody vzduch a v druhé je vzduch vypuštěn, tzn. nad hladinou vody se nachází pouze vodní páry. Můj dotaz zní: bude v nádobě, ve které není vzduch, větší množství vodních par, nebo bude v obou nádobách stejné množství vodní páry (nad vodní hladinou)? (petr)

    Odpověď: V nádobě, v níž je v rovnovážném stavu voda se svými parami, je tzv. dynamická rovnováha. To znamená, že ačkoliv z makroskopického pohledu se nic nemění (množství kapalné a plynné fáze je pořád stejné), na mikroskopické úrovni se něco děje: molekuly vody se neustále chaoticky pohybují, občas některá "vyskočí" z kapaliny a stane se součástí par ("vypaří se"), jindy se zase molekula páry vrátí do kapaliny ("zkondenzuje").

    Rovnováha závisí tedy na tom, jak "husto" je molekul vodní páry v plynné fázi nad kapalinou - pokud příliš mnoho, kondenzují, pokud příliš málo, nastává vypařování z kapalné fáze. Přitom nezáleží na tom, mezi čím se tyto molekuly vodní páry pohybují - zda mezi částicemi vzduchu, ve vzduchoprázdnu nebo v jakémkoli jiném plynu; záleží pouze na jejich množství v jednotce objemu. Selským rozumem usoudíme, že nemůže být tak úplně jedno, zda se molekuly pohybují mezi "ničím" nebo mezi částicemi vzduchu - ale za běžných podmínek je jakýkoli plyn natolik "řídký", že částice v něm se pohybují dostatečně volně.

    Je-li ve Vašich nádobách stejné množství kapalné fáze a v obou případech jde o rovnovážný stav, musí v nich být také stejná množství vody v plynném skupenství, v důsledku tedy stejný tlak molekul vodní páry. Liší se pouze celkový tlak nad kapalinou v nádobě - v jednom případě je plynná fáze tvořena pouze vodními parami, v druhém stejným množstvím vodních par a navíc ještě vzduchem, takže celkový tlak je zde vyšší, tvořený součtem tzv. parciálních (částečných) tlaků jednotlivých složek (vodní pára, kyslík, dusík, oxid uhličitý... ).

    A jaký je tlak syté vodní páry, tedy páry v dynamické rovnováze s kapalnou vodou? To závisí na teplotě. Např. při 10 °C je to asi 1,2 kPa (setina atmosférického tlaku), při 50 °C asi 12 kPa, při 100 °C je to akorát atmosférický tlak a při 120 °C je to asi 2,5 násobek atmosférického tlaku.

    (Pavel Böhm a Hanka Böhmová)   >>>