FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 174 dotazů obsahujících »tlak«

52) Difuze plynů16. 05. 2007

Dotaz: Pokud uložím směs plynů vzniklých při elektrolýze vody do zásobníku, dojde časem k oddělení vodíku a kyslíku vzhledem k jejich rozdílné hmotnosti? (kenko)

Odpověď: Spíš naopak, nehomogenity vzniklé při míchání směsi se ještě difúzí vyrovnají. Každý plyn se bude v rovnováze v dobré aproximaci chovat tak, jako by byl v nádobě sám, a pokud neuvažujeme děsně velkou nádobu, ve které by byl znatelný úbytek tlaku s výškou, bude jejich poměr všude stejný. Situace, kdy plyn s větší hustotou má větší koncentraci u podlahy (například když napustíte do akvária CO2 z bombicek) je nerovnovážná a difuze ji dříve nebo později zruší. Podobně nerovnovážná situace je nad hrncem s vroucí vodou, tam je evidentně koncentrace vodní páry větší než o kousek vedle. Dovaříte-li však a počkáte, bude vlhkost vzduchu opět stejná v celé mísnosti.

Leccos zajímavého je například v heslech diffusion, partial pressure ... ve Wikipedii.

(Jiří Dolejší)   >>>  

53) Zahřívá Zemi radioaktivita?02. 05. 2007

Dotaz: Dobrý den! Naše Země (planeta) je pod povrchem žhavá. Uprostřed Země se nachází pevné kovové jádro, ve kterém dochází ke štěpným jaderným reakcím. Vznikajícím teplem, na asi 6000 K ohřáté okolí jádra, je již tekuté, doběla rozžhavené. Směrem k Zemskému povrchu teplota klesá a roztavené horniny začínají být plastické. Stejně jako u vody v čajové konvici, i v zemském nitru vznikají stoupající proudy roztaveného magmatu, deroucí se k Zemskému povrchu. Zajímalo by mě, jestli je magma a láva vyvrhovaná při sopečných erupcích, radioaktivní. Tekuté magma je přeci směs chemických prvků (sloučenin) ohřívaných Zemským jádrem, ve kterém dochází ke štěpným reakcím, obdobně jako v jaderném reaktoru. Předpokládám tedy existenci radiace Zemského jádra. Předpokládím proto alespoň sekundární radioaktivitu směsi chemických prvků (magmatu), s různými poločasy rozpadu, jádrem ozářených. Tak jak to je ve skutečnosti? Děkuji za Váš čas a jsem s pozdravem. (Vladimír Štěpnička)

Odpověď: Nedomníváme se, že by v Zemi docházelo ke štěpným reakcím podobného typu jako v jaderném reaktoru, protože nic nesvědčí pro to, že by se v Zemi nacházela dostatečná koncentrace nějakého štěpného materiálu. Přesto jsme přesvědčeni o vysokých teplotách zemského jádra (jen o trochu nižších než uvádíte v dotazu - na rozhraní jádro-plášť by mohla být teplota o něco nižší nebo srovnatelná s 4000 K, ve středu Země cca 5000 K).

Hlavní zdroj tepla v nitru Země je patrně dvojího původu:

  • gravitačního, kdy při vzniku Země došlo ke smrštění prapůvodního materiálu a odpovídající úbytek gravitační potenciální energie se přeměnil na teplo; není vyloučeno, že i v současnosti gravitační potenciální energie zemského tělesa poněkud klesá, pokud dochází ke gravitační diferenciaci materiálu (spekuluje se např. o možnosti, kdy se na rozhraní vnitřního a vnějšího jádra oddělují lehčí příměsi od železa). (Poznámka: Vnější jádro je tekuté.)

  • radioaktivního - materiál tvořící zemské těleso obsahuje i radioaktivní izotopy některých prvků, vylétávající částice alfa či beta mají určitou kinetickou energii, která se nakonec přemění na teplo - z hlediska energetického mají v současnosti význam hlavně izotopy U238, U235, Th232 a K40, jejichž poločasy rozpadu jsou řádově srovnatelné se stářím Země. O těchto izotopech se domníváme, že pocházejí z původního materiálu, z něhož vznikla Země, nebyly tedy vytvořeny v průběhu existence Země. Není vyloučeno, že v mladší Zemí hrála z energetického hlediska určitou roli i radioaktivita některých prvků s kratšími poločasy rozpadu, jejichž koncentrace je nyní zanedbatelná.

    Hovoříme-li tedy o radioaktivních prvcích v Zemi, mluvíme o tzv. přirozené radioaktivitě na rozdíl od umělé radioaktivity, která je (na Zemi) důsledkem technické činnosti jaderných zařízení. Otázka týkající se přirozené radioaktivity horkého magmatu souvisí s tzv. diferenciaci materiálu u zemského povrchu: Zemský plášť je plastický, nikoliv však tekutý, protože teplota tání tohoto materiálu značně závisí na tlaku a jen v oblasti nízkých tlaků u zemského povrchu nastává situace, kdy se horký materiál pláště začíná tavit, díky čemuž vzniká tekuté magma. Geochemici tvrdí, že "tendence" jednotlivých prvků vytvářet magma je značně variabilní a právě radioaktivní prvky, do něj "vstupují" snadno. Z magmatu nakonec vznikají jednotlivé minerály tvořící horniny kůry. Tento proces vede k tomu, že se ze zemského pláště postupně "odčerpávají" radioaktivní prvky, takže jejich koncentrace v kontinentální kůře je nyní mnohem vyšší než ve ("vyčerpaném") materiálu pláště.

    Jen pro zajímavost: cca 20 km vrstva žuly by byla schopna (díky vysokému obsahu radioaktivních prvků) produkovat tepelný tok, který je srovnatelný s průměrným tepelným tokem měřeným na povrchu kontinentu.

  • (Ctirad Matyska; redakčně upravil Jakub Jermář)   >>>  

    54) Mrznutí vody za vyšších tlaků11. 04. 2007

    Dotaz: Jak velký tlak vyvíjí voda, když zmrzne v těsném prostoru? (Václav Kadlec)

    Odpověď: Tento tlak je obrovský. Jeho velikost můžeme odhadnout ze závislosti teploty tuhnutí vody na tlaku. Při atmosférickém tlaku je tato teplota 0 °C, při tlaku stokrát větším je asi -1 °C, při tlaku dvou tisíc atmosfér je to asi -20 °C. To znamená, že při tlaku 2000 atmosfér se začne led tvořit až při teplotě nižší než 20 °C pod nulou, při vyšších teplotách zůstává voda v kapalném skupenství.

    Pokud vodu budeme chladit, ale nedovolíme jí zvýšit při krystalizaci v led svůj objem, bude se zvyšovat její tlak až k takové hodnotě, kdy při dané teplotě může voda stále ještě být v kapalném skupenství - pro teplotu -1 °C je to přibližně 100 atmosfér, pro -20 °C je tento tlak okolo 2000 atmosfér.

    (Pavel Böhm)   >>>  

    55) Sytá vodní pára16. 02. 2007

    Dotaz: Dobrý den, máme dvě nádoby stejného objemu, ve kterých je voda, rovněž stejného objemu (přičemž voda nezabírá celý objem nádoby). V jedné nádobě je nad hladinou vody vzduch a v druhé je vzduch vypuštěn, tzn. nad hladinou vody se nachází pouze vodní páry. Můj dotaz zní: bude v nádobě, ve které není vzduch, větší množství vodních par, nebo bude v obou nádobách stejné množství vodní páry (nad vodní hladinou)? (petr)

    Odpověď: V nádobě, v níž je v rovnovážném stavu voda se svými parami, je tzv. dynamická rovnováha. To znamená, že ačkoliv z makroskopického pohledu se nic nemění (množství kapalné a plynné fáze je pořád stejné), na mikroskopické úrovni se něco děje: molekuly vody se neustále chaoticky pohybují, občas některá "vyskočí" z kapaliny a stane se součástí par ("vypaří se"), jindy se zase molekula páry vrátí do kapaliny ("zkondenzuje").

    Rovnováha závisí tedy na tom, jak "husto" je molekul vodní páry v plynné fázi nad kapalinou - pokud příliš mnoho, kondenzují, pokud příliš málo, nastává vypařování z kapalné fáze. Přitom nezáleží na tom, mezi čím se tyto molekuly vodní páry pohybují - zda mezi částicemi vzduchu, ve vzduchoprázdnu nebo v jakémkoli jiném plynu; záleží pouze na jejich množství v jednotce objemu. Selským rozumem usoudíme, že nemůže být tak úplně jedno, zda se molekuly pohybují mezi "ničím" nebo mezi částicemi vzduchu - ale za běžných podmínek je jakýkoli plyn natolik "řídký", že částice v něm se pohybují dostatečně volně.

    Je-li ve Vašich nádobách stejné množství kapalné fáze a v obou případech jde o rovnovážný stav, musí v nich být také stejná množství vody v plynném skupenství, v důsledku tedy stejný tlak molekul vodní páry. Liší se pouze celkový tlak nad kapalinou v nádobě - v jednom případě je plynná fáze tvořena pouze vodními parami, v druhém stejným množstvím vodních par a navíc ještě vzduchem, takže celkový tlak je zde vyšší, tvořený součtem tzv. parciálních (částečných) tlaků jednotlivých složek (vodní pára, kyslík, dusík, oxid uhličitý... ).

    A jaký je tlak syté vodní páry, tedy páry v dynamické rovnováze s kapalnou vodou? To závisí na teplotě. Např. při 10 °C je to asi 1,2 kPa (setina atmosférického tlaku), při 50 °C asi 12 kPa, při 100 °C je to akorát atmosférický tlak a při 120 °C je to asi 2,5 násobek atmosférického tlaku.

    (Pavel Böhm a Hanka Böhmová)   >>>  

    56) Čínský ptáček16. 02. 2007

    Dotaz: Hezký den. Prosím, jak funguje hračka "čínský ptáček". Nikdy jsem tuto hračku v praxi neviděl. Je uvedena v uč. fyziky pro G - Molekulová fyzika a termika, 4. vyd. 2000 na str. 110-111. Děkuji. (Zbyněk Matějka, Mgr.)

    Odpověď: Tato hračka, "čínský ptáček" je tvořena skleněnou baňkou - tělem, na níž navazuje skleněná trubička - krček - zakončená trochu širší hlavičkou (obr. 1). Celý ptáček je uchycen tak, aby se mohl volně otáček okolo osy vyznačené zeleným křížkem. V těle ptáčka je těkavá kapalina, údajně ether, nad kapalinou je jak v těle (A), tak i v krčku a hlavičce (B) sytá pára této kapaliny. Jakmile ptáčkovi vodou smočíme zobáček, dojde vlivem odpařování vody ze zobáčku k ochlazování hlavičky a v hlavičce a krčku spolu s teplotou poklesne i tlak sytých par, zatímco v tělíčku zůstává tlak stále stejný. Tento rozdíl tlaků vytlačuje kapalinu z tělíčka do krčku (obr. 2). Spolu s přesouvající se kapalinou se pomalu přesouvá i těžiště celého ptáčka. Vystoupá-li kapalina dostatečně vysoko, ptáček se převáží a nakloní dopředu. Když se nakloní dostatečně (obr. 3), dojde k propojení tělíčka a hlavičky, tlaky se vyrovnají, kapalina přeteče zpět do tělíčka a ptáček se opět napřímí (opět obr. 1). Při předklonu si ale ptáček smočil zobáček ve skleničce s vodou, která stojí před ním, takže se voda z jeho zobáčku zase začne odpařovat a celé se to může opakovat.

    (Jakub Jermář)   >>>