FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 92 dotazů obsahujících »vakuu«

40) Rychlost rozpínání vesmíru04. 05. 2006

Dotaz: Dobrý den, chtěla bych se zeptat, co se stane, až rychlost rozpínání vesmíru dosáhne rychlosti světla? Slyšela jsem, že se tato rychlost zvětšuje. Obrátí se pak časová šipka? A co by se stalo s lidmi, kdyby ještě nějací žili? To by se opakovaly celé dějiny Země? (Kačka)

Odpověď: Rychlost rozpínání vesmíru není rychlost ve smyslu středoškolské fyziky (tedy o kolik metrů se něco posune za 1 sekundu), ale spíše o kolik procent se daný předmět či vzdálenost za jednu sekundu protáhne. Z tohoto důvodu ani není jasné, jak by se měla rychlost světla ve vakuu (c = 299 792 458 m/s) s "rychlostí" rozpínání vesmíru (neboli Hubbleovou konstantou H = 2·10-18s-1) porovnávat.

(Jakub Jermář)   >>>  

41) Vakuum při Torriceliho pokusu04. 05. 2006

Dotaz: Měl bych dotaz k Torriceliho pokusu, stručně a jednoduše, s kamarády se totiž nemůžeme dohodnout jestli je možné, aby v trubici vzniko vzduchoprázdno. Díky moc za odpověď (Pavel)

Odpověď: Přesně vzato, v trubici úplné vakuum nevznikne - rtuť se nepatrně odpaří, tak aby nad její hladinou vznikla její sytá pára. Přesto je zde tlak dostatečně nízký na to, abychom mohli rtuťové páry zanedbat a považovat je za vakuum.

(Jakub Jermář)   >>>  

42) Čerenkovovo záření06. 04. 2006

Dotaz: Lze vidět čerenkovovo záření? Jestli ano, tak jak vypadá. Stačí www odkazy. Děkuji (Matěj)

Odpověď: Čerenkovovo záření vzniká tehdy, prolétá-li nabitá částice látkovým prostředím s rychlostí převyšující rychlost světla v tomto prostředí (nezaměňovat s rychlostí světla ve vakuu, ta je vyšší a částice jí dosáhnout nemůže). Dochází přitom ke vzniku elektromagnetické rázové vlny, při níž je emitováno viditelné světlo nazývané Čerenkovovo záření.

Záření může být okem viditelné, sám Čerenkov jej v roce 1934 pozoroval jako slabé modravé světélkování.

Dnes se Čerenkovova záření využívá například v detektorech částic, např. pro detekci velmi lehkých neutrin. Úhel kužele, v němž je Čerenkovovo záření emitováno totiž umožňuje určit rychlost částice.

Více se o Čerenkovově záření dozvíte například na:

(Jakub Jermář)   >>>  

43) Antineutron30. 03. 2006

Dotaz: Chtěl bych se zeptat jestli když se vytvoří antihmota zůstává neutron pořád neutrální nebo se mění jako např. elektron na kladný pozitron a jak se dá v našich podmínkách uchovat antihmota (aby nedošlo k anihilaci)??? Děkuji (Tomek Martin)

Odpověď: Částici antihmoty odpovídající neutronu nazýváme antineutron. Je stejně jako neutron sám elektricky neutrální. Od neutronu se ale antineutron liší opačným směrem svých magnetických polí vzhledem ke směru svých spinů a rovněž opačným znaménkem baryonového náboje (nezaměňujme přitom baryonový náboj a nám asi známější elektrický náboj - jde o dvě zcela různé vlastnosti částice, které spolu nijak přímo nesouvisí).

Uchovávání antihmoty (i samotných antičástic) je velice problematické. Je potřeba vytvořit vysoké vakuum a zároveň zabránit částicím, aby narážely na stěny nádoby (kde by samozřejmě ihned anihilovaly). U eketricky nabitých částic to umíme zařídit pomocí vhodně tvarovaného silného elektrického či častěji magnetického pole (tzv. magnetická past). Princip, který by umožňoval dlouhodobé přechovávání elektricky neutrálních částic, mi není znám.

Více se o antihmotě dozvíte například na stránkách časopisu Vesmír A také třeba na serveru Aldebaran
(Jakub Jermář)   >>>  

44) Teplota vakua27. 03. 2006

Dotaz: Dobrý den.Chtěl bych se zeptat jaká je teplota ve vakuu? Pokud je to absolutní nula,tak co je to absolutní nula.Děkuji. (spider-x)

Odpověď: Představme si komoru se zcela vyčerpaným vzduchem. Ve vakuu uvnitř komory i po vyčerpání vzduchu mohou existovat (a také existují) elektromagnetické vlny. Tyto vlny dopadají na stěny nádoby a zahřívají je (předávají jim svou energii), zároveň však stěny nádoby tepelně září (i tepelné záření je ve své podstatě záření elektromagnetické, jeho intenzita pak odpovídá Stefan-Boltzmanově vyzařovacímu zákonu). Pokud je komora izolována od okolního světa, časem se dostane do stavu, kdy intenzita dopadajícího a vyzařovaného elektromagnetického záření se vyrovná. Dostali jsme se tedy do stavu, kdy stěny komory i vakuum jsou v termodynamické rovnováze a můžeme tedy říct, že mají stejnou teplotu. Vakuum má tedy teplotu odpovídající teplotě předmětů, s nimiž je v termodynamické rovnováze.

Teplota vakua ve vesmíru (neboli záření vesmírného pozadí) odpovídá teplotě necelých 3K, tedy přibližně -270°C.

Pozor! Nemá smysl určovat teplotu za situace, že zkoumané prostředí není v termodynamické rovnováze a jsou v něm nezanedbatelné toky energie. To je také důvod, proč se například teplota vzduchu měří vždy ve stínu ("na sluníčku" totiž nemůžeme zanedbat tok energie od Slunce).

Absolutní nula je nejnižší možná termodynamická teplota (0K) odpovídající přibližně -273,15°C.

(Jakub Jermář)   >>>