FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 92 dotazů obsahujících »vakuu«

61) Význam spojení slight vacuum03. 11. 2003

Dotaz: Dobrý den, rád bych se zeptal jaký je správný překlad výrazu: Slight vacuum. (Jan Sýkora)

Odpověď: AVS (Americal Vacuum Society) toto neužívá. Užívá pro vakuum následující označení:
low (nízké) do 103 Pa,
medium (střední) mezi 103 až 10-1,
high (vysoké) mezi 10-1 až 10-4,
very high (velmi vysoké) mezi 10-4 až 10-7,
ultra high (ultra vysoké) mezi 10-7 až 10-10.
Je ovšem pravda, že ne všichni (zvláště v Evropě) to dodržují. Slight coby "mírné" bych si tipnul na to nízké (low).
(J. Obdržálek)   >>>  

62) Anihilace částic10. 10. 2003

Dotaz: Prosím poraďte mi s odpovědí na následující dotaz, sám jsem nebyl tazatele schopen uspokojit. Jakým způsobem je zajištěno, aby po vzniku antičástice nedošlo okamžitě k anihilaci s její částicí. Dočetl jsem se v nějakém časopise, že se k tomu používá tzv. magnetická past. Ale jestli je to tak, proč právě magnetické pole, případně jak to funguje? Stačil by mi i odkaz na nějaké webové stránky, sám jsem při hledání neměl štěstí. (R. Petr)

Odpověď: Pravděpodobnost, že vzniklá antičástice anihiluje s jinou částicí, je dána účinným průřezem této interakce a hustotou potenciálních terčů, tj. zde partnerských částic. Takže když necháte antičástici létat ve vakuu, nemá s čím anihilovat. Můžete ji třeba pustit do vesmíru, když si ji chcete udržet v dohledu v nějaké vakuové nádobě, musíte ji tam donutit zůstat - musíte ji tam udržet. Když bude ona antičástice nabita, můžete ji ve své vakuové pasti držet pomocí magnetického a/nebo elektrického pole. To se skutečně dělá. Napište do hledače slova jako "antiparticle" "trap" nebo "magnetic trap".
(J.Dolejší)   >>>  

63) Maximální rychlost při volném pádu08. 10. 2003

Dotaz: Chtěla jsem se zeptat, jak je to s volným pádem, jestli těleso dosáhne nějaké maximální rychlosti (pokud ano, jak se zjistí její hodnota) a pak už jenom tuto rychlost dodržuje, nebo jestli až do konce pádu zrychluje. (Jana Wernerová)

Odpověď: Ve vakuu pod vlivem gravitačního pole by se těleso zrychlovalo až k rychlosti světla (pokud by někam nespadlo dříve), ve vzduchu kromě tíhy působí právě odpor vzduchu, takže se rychlost stabilizuje na takové hodnotě, kdy je odpor právě rovný tíze. Takže parašutista ve stabilizované poloze padá stálou rychlostí snad okolo 50 m/s, jestli si to dobře pamatuji, když poletí jako šipka, bude mít více. Kapky deště se taky neurychlují pořád, jak ostatně víte z toho, že například z mraku kilometr nad vámi nedopadají rychlostí v=odmocnina(2gh)=140 m/s (experimentálně to lze srovnat například tak, že vystrčíte za deště tvář v autě na dálnici (já bych si vzal dobré brýle).
(J.Dolejší)   >>>  

64) Která kulka dopadne na zem dřív?24. 09. 2003

Dotaz: Zajímalo by mne, zda je pravda, že kulka vystřelená vodorovně z dané výšky letí déle, než kdyby byla ze stejné výšky upuštěna. A proč? (Honza)

Odpověď: Odpor vzduchu je úměrný druhé mocnině rychlosti. Proto odpor vzduchu kulky padající svisle dolů z malé výšky je relativně malý. Např. při pádu z výšky 5 m je téměř zanedbatelný (doba pádu cca 1s). Na kulku startující vodorovně rychlostí např. 200 m/s je ale odpor mnohem větší a protože kulka neletí vodorovně, ale vektor její rychlosti je čím dál více skloněn k zemi, opačně namířený odpor vzduchu má složku mířící nahoru a ta je vzhledem k velké rychlosti větší, než odpor při volném padání. Pohyb k zemi je proto oproti pádu s nulovou počáteční rychlostí vzduchem více zbržďován. Kulka letí déle. Co platí pro vzduch ale neplatí pro vakuum. Tam obě kulky dopadnou na zem současně.
(M.Rojko)

Reakce na odpověď:(4.5.2004) Radim Pospěch
Zdá se mně, že Vaše vysvětlení není správné. Myslím, že obě kulky dopadnou na zem za stejnou dobu. V každém bodě dráhy kulky lze přece vektor její rychlosti rozložit do složky vodorovné a svislé, svislá rychlost je pak stejná pro kulku vystřelenou i pro kulku volně padající. Stejně pak je možno rozložit i síly - gravitační a odporu vzduchu. Svislé složky sil a rychlostí jsou pro oba případy pořád stejné, proto dopadnou kulky na zem stejně. Tolik, pokud bereme v úvahu jen gravitaci a odpor homogenního prostředí. Ve skutečnosti se uplatní aerodynamické efekty při obtékání kulky (rozdílný tvar a působení vírové oblasti nad kulkou), které zřejmě způsobí, že vystřelená kulka dopadne přece jen později. Laicky, kulka bude tak trochu "plachtit", podobně jako vržený oštěp.

Odpověď:
Vážený kolego, chyba ve Vaší úvaze tkví v tom, že složku odporu vzduchu musíme počítat ze čtverce velikosti vektoru rychlosti a ne jednoduše jen ze složek rychlosti. To jde jen v případě, že rychlosti proudění kolem tělesa jsou laminární a odpor prostředí lze počítat ze Stokesova vztahu (lineární závislost odporu na rychlosti). Svou úvahu jsem ověřil tím, že jsem pohyb obou kulek namodeloval na počítači. Je to ale vidět rovnou ze vztahů pro ypsilonovou složku zrychlení bržděného pohybu: ay= -g-konst*v2*(vy/v), která je menší než ay = g - konst*u2, kde u je okamžitá rychlost svislého vzduchem bržděného pádu. ( v byla okamžitá rychlost letící vystřelené kulky). Můžete si to v Excelu snadno namodelovat. Platí to samozřejmě i pro kulatou kulku. Efekty tvarové jsem ve své odpovědi neuvažoval.
(M.Rojko)   >>>  

65) Proč jsou látky průhledné?04. 06. 2003

Dotaz: Dokázal již někdo přijatelně vysvětlit proč jsou některé látky průhledné a průsvitné? Jak procházejí fotony hmotou? Nezdá se mi, že by šlo o postupné předávání vlnění z čelní plochy skrz až na plochu výstupní. Dopadající fotony přece nemají takovou energii, aby dokázaly rozkmitat celou tlošťku a navíc (u látek průhledných) bez zkreslení. Jak to ty fotony dělají? (Pavel Dombrovský)

Odpověď: Vaše formulace se mi zdá být zatížena takovou "materiální" představou fotonů jako kuliček z něčeho zformovaných - třeba střel, které si mají prorazit cestu "nepřátelským územím". Ale tomu tak není. Realitě je stejně blízká představa, že foton je pomluva, která se šíří mezi lidmi - vzruší je (rozkmitá je), oni ji předají dál, a zapomenou na ni. I toto je samozřejmě jen příměr.
Chcete-li hlubší fyzikální obraz, podle kterého by taky šlo něco spočítat, pak nezbyde než sáhnout po nějaké učebnici fyzikální optiky. Z hlediska kvantové teorie je to všecko jednak složitější, jednak jednodušší. Zavádíme tzv. účinný průřez pro to, abychom jednoduše popsali "velikost terče" při interakci (srážce); průběh srážky se počítá kvantově, ale o tom nemá smyslu mluvil takhle "letmo". Taky foton (coby kvantovaná elektromagnetická vlna) v látkovém prostředí je "něco jiného" než foton ve vakuu - v látce se prostě na elektromagnetických kmitech E, B "přiživí" i nabité částice tvořící látku (jádra, elektrony). Proto vychází ustálená rychlost menší než c. Rozbor přechodových jevů je dosti složitý i klasicky (viz např. Stratton: Teorie elektromagnetického pole).
Mimochodem, takové neutrino dokáže proletět Zeměkoulí s velice vysokou pravděpodobností, že se vůbec neodchýlí.
(J.Obdržálek)   >>>