FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 92 dotazů obsahujících »vakuu«

70) Rychlost volného pádu06. 03. 2003

Dotaz: Tvrdím, že konstantní rychlost při volném pádu je 33 metrů za sekundu. Mí kolegové se mi smějí a tvrdí, že nemám pravdu a že nejsem inteligentní. Můžete mi, prosím vysvětlit jak to vlastně je a na čem všem to tedy záleží? (Blažek Dalibor)

Odpověď: Rychlost při reálném pádu ve vzduchu se mění dosti složitě, ve vakuu velmi jednoduše.
Vezmeme nejdříve ten jednodušší případ.
Na padající věc působí jen Země (tady zanedbáváme rotaci, ale její vliv je malý a ještě se snoubí s vlivem šišatosti Země) a naděluje všem padajicím předmětům stejné zrychlení (v Praze 9,81 m.s-2) Ve vakuu, když to tedy padá z rozumné výšky, při které můžeme zanedbat slábnoucí gravitaci se vzdalováním od středu Země, roste rychlost stále, rovnoměrně s dobou padání (v = 9,81.doba padání.)
Když je ale přítomen vzduch, který pád brzdí, pak tato rovnice je použitelná jen chviličku, potud, pokud je odpor vzduchu zanedbatelný. Otázkou je, jak dlouho je zanedbatelný. A tady je ten problém. U olověnné kuličky, nejsme-li moc nároční na přesnost předpovědi to budou sekundy. U pouťového balónku desetiny sekundy, u prachového zrnka tisíciny sekundy, u parašutisty 2-3 sekundy. Tak, jak narůstá odpor vzduchu, zrychluje se padání méně a méně, až dojde k ustálení rychlosti. Ta ustálená rychlost je opět případ od případů různá. Olověná kulička centimetrové velikosti by to dotáhla blízko Vaší rychlosti (desítky metrů za sekundu), parašutista se zbaleným padákem se ustálí na rychlosti zhruba dvojnásobné (cca 50 m/s). Kdyby se zbalil do klubíčka i on, tak by dosáhl ovšem větší rychlost. Pouťový balónek to nedotáhne na víc než na metry za sekundu a prachové zrnko ustálí svou rychlost na minirychlosti řádu desetin milimetrů za sekundu.
Jak je vidět, jedoduše říci, jakou rychlostí se při padání padá, nejde. Záleží nejen na tom, co padá, ale i na tom, jak je to natočeno, když to padá. Kdyby chtěl ten parašutista se zbaleným padákem udělat rekord v rychlosti padání, tak by asi udělal šípku ve směru letu. Na čem ta ustálená rychlost záleží? Dalo by se shrnout, že na odporu vzduchu a na hmotnosti padajícího předmětu. V té odporové síle jsou schované vlastnosti vzduchu, tvár a velikost padajícího objektu a natočení předmětu při padání.
(M.Rojko)   >>>  

71) Skládání vln03. 02. 2003

Dotaz: Světelná vlna (pro jednoduchost uvažujme ve vakuu) má hustotu energie úměrnou kvadrátu amplitudy elektrického pole. Když bychom měli 2 koherentní vlny o stejné amplitudě, frekvenci a a směru šíření, závisela by výsledná amplituda na jejich fázovém rozdílu, a mohla by být kterékoli číslo od nuly do dvojnásobku původní amplitudy, a energie této vlny by tedy mohla být jakákoli od nuly do čtyřnásobku energie jedné vlny. Jak se to shoduje se zákonem zachování energie? (Josef Horák)

Odpověď: Na to, abychom do stávajícího pole "vnutili" pole další (tj. zvětšili elmg. pole, protože stejně nemá smyslu mluvit o tom, čí pole je čí), musíme dodat energii, a to bude právě ten rozdíl. Potřebná energie závisí na tom, jaké pole už tam je, tj. na fázi.
(J.Obdržálek)   >>>  

72) Rychlost vlny03. 02. 2003

Dotaz: 1) Fakt. Ve vakuu: ať se pohybuje objekt jakoukoli rychlostí, světlo se vůči němu pohybuje rychlostí světla "c".
2) Dotaz. Ve hmotném prostředí se pohybuje rychlostí v (Vlasta)

Odpověď: Tady je lépe mluvit o vlně než o fotonu, je to názornější. On totiž "foton ve hmotném prostředí" není "zpomalený foton", ale je to kolektivní záležitost jako každé šíření signálu hmotným prostředím. Je dobře si to představit mikroskopicky, kdy jakoby není "látka", ale "její molekuly ve vakuu". Foton = pole rozkmitá ty molekuly, protože jejich části mají elektrický náboj; tyto pak kmitajíce opět vyzařují, atd., a celý tento proces ve střední hodnotě postupuje právě tou rychlostí c/n.
(J.Obdržálek)   >>>  

73) "Délka" fotonu31. 01. 2003

Dotaz: Jaká by byla délka fotonu pro pozorovatele "vezoucího" se na něm? (hubert mazanek)

Odpověď: 1) V celém dalším mluvení míním "světelnou rychlostí" rychlost 299792458 m/s, tedy např. rychlost světla ve vakuu. Světlo v hmotném prostředí je jev mnohem složitější.
2) Termín "délka fotonu" není jasný. Míní se tím vlnová délka (barva světla)? anebo představa, že foton je kulička, mající tím pádem v jednom směru jistou délku?
3) Žádného pozorovatele, který někdy vůči mě stál anebo měl podsvětelnou rychlost, nelze urychlit na rychlost světelnou (a ovšem tím spíše ani na rychlost nadsvětelnou). Byla by k toku potřeba nekonečně velká energie. A pro skutečného pozorovatele, ať se pohybuje vůči mně jakkoli rychle, se světlo pohybuje úplně stejnou rychlostí, jak pro mne. On tedy necítí to, že se - vzhledem ke mně - "blíží rychlosti světla" tak, že by se on sám nějak světlu blížil, např. že by ho doháněl anebo že by mu unikalo pomaleji než mu unikalo dříve.
Ovšem hlavní věc: toto vše NENÍ vlastnost světla, fotonu apod. To je vlastnost prostoročasu (což je právě vlastní objev Einsteinùv; popis "kontrakce délek" znali už dříve Lorentz aj.)
(J.Obdržálek)   >>>  

74) Gravitační vlny04. 12. 2002

Dotaz: Jak se můžou gravitační vlny šířit vakuem, prázdnotou? Ohýbá antihmota prostoročas stejně, jako normální hmota? (Ondra)

Odpověď: Protože na šíření gravitačních a elektromagnetických vln není potřeba žádné médium jako je třeba vzduch potřeba na šíření našich řečí. V přírodě to tak je (jinak by světlo ze Slunce nedolétlo na Zemi, protože tam nahoře je přece vakuum) a my bychom tu nebyli. Tyto otázky řešili fyzici na přelomu předminulého a minulého století (je éter nebo není), mrkněte se do nějaké knihy o teorii relativity. Předpokládáme, že gravitační účinky antihmoty jsou stejné jako účinky hmoty, experimentálně je zatím ověřeno jen to, že na antiproton působí stejná gravitační síla, jako na proton.
(J.Dolejší)   >>>