Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 92 dotazů obsahujících »vakuu«
71) Skládání vln
03. 02. 2003
Dotaz: Světelná vlna (pro jednoduchost uvažujme ve vakuu) má hustotu energie
úměrnou kvadrátu amplitudy elektrického pole. Když bychom měli 2 koherentní
vlny o stejné amplitudě, frekvenci a a směru šíření, závisela by výsledná
amplituda na jejich fázovém rozdílu, a mohla by být kterékoli číslo od nuly
do dvojnásobku původní amplitudy, a energie této vlny by tedy mohla být
jakákoli od nuly do čtyřnásobku energie jedné vlny. Jak se to shoduje se
zákonem zachování energie? (Josef Horák)
Odpověď: Na to, abychom do stávajícího pole "vnutili" pole další (tj. zvětšili elmg.
pole, protože stejně nemá smyslu mluvit o tom, čí pole je čí), musíme dodat
energii, a to bude právě ten rozdíl. Potřebná energie závisí na tom, jaké
pole už tam je, tj. na fázi.
Dotaz: 1) Fakt. Ve vakuu: ať se pohybuje objekt jakoukoli rychlostí, světlo se
vůči němu pohybuje rychlostí světla "c".
2) Dotaz. Ve hmotném prostředí se pohybuje rychlostí v (Vlasta)
Odpověď: Tady je lépe mluvit o vlně než o fotonu, je to názornější. On totiž "foton
ve hmotném prostředí" není "zpomalený foton", ale je to kolektivní
záležitost jako každé šíření signálu hmotným prostředím. Je dobře si to
představit mikroskopicky, kdy jakoby není "látka", ale "její molekuly ve
vakuu". Foton = pole rozkmitá ty molekuly, protože jejich části mají
elektrický náboj; tyto pak kmitajíce opět vyzařují, atd., a celý tento
proces ve střední hodnotě postupuje právě tou rychlostí c/n.
Dotaz: Jaká by byla délka fotonu pro pozorovatele "vezoucího" se na něm? (hubert mazanek)
Odpověď: 1) V celém dalším mluvení míním "světelnou rychlostí" rychlost
299792458 m/s, tedy např. rychlost světla ve vakuu. Světlo v hmotném
prostředí je jev mnohem složitější.
2) Termín "délka fotonu" není jasný. Míní se tím vlnová délka (barva
světla)? anebo představa, že foton je kulička, mající tím pádem v jednom
směru jistou délku?
3) Žádného pozorovatele, který někdy vůči mě stál anebo měl
podsvětelnou rychlost, nelze urychlit na rychlost světelnou (a ovšem tím
spíše ani na rychlost nadsvětelnou). Byla by k toku potřeba nekonečně velká
energie. A pro skutečného pozorovatele, ať se pohybuje vůči mně jakkoli
rychle, se světlo pohybuje úplně stejnou rychlostí, jak pro mne. On tedy
necítí to, že se - vzhledem ke mně - "blíží rychlosti světla" tak, že by se
on sám nějak světlu blížil, např. že by ho doháněl anebo že by mu unikalo
pomaleji než mu unikalo dříve.
Ovšem hlavní věc: toto vše NENÍ vlastnost světla, fotonu apod. To je
vlastnost prostoročasu (což je právě vlastní objev Einsteinùv; popis
"kontrakce délek" znali už dříve Lorentz aj.)
Dotaz: Jak se můžou gravitační vlny šířit vakuem, prázdnotou? Ohýbá antihmota prostoročas stejně, jako normální hmota? (Ondra)
Odpověď: Protože na šíření gravitačních a elektromagnetických vln není potřeba žádné médium jako je třeba vzduch potřeba na šíření našich řečí. V přírodě to tak je (jinak by světlo ze Slunce nedolétlo na Zemi, protože tam nahoře je přece vakuum) a my bychom tu nebyli. Tyto otázky řešili fyzici na přelomu předminulého a minulého století (je éter nebo není), mrkněte se do nějaké knihy o teorii relativity. Předpokládáme, že gravitační účinky antihmoty jsou stejné jako účinky hmoty, experimentálně je zatím ověřeno jen to, že na antiproton působí stejná gravitační síla, jako na proton.
Dotaz: Prosím, můžete mi sdělit, zda hromada téhož písku na Měsíci, bude mít stejný úhel násypu, jako ve vakuu na Zemi? Jinými slovy: Má velikost gravitace vliv na přirozený násypný úhel materiálu? (Jirka Veselý)
Odpověď: Ano, bude mít stejný úhel násypu. Ten nezávisí na g; je-li
g několikrát větší, je sice větší tíže, ale taky je
tolikrát větší normálová složka tíže a tedy i třecí
síla.