FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 92 dotazů obsahujících »vakuu«

78) Teplota vakua16. 10. 2002

Dotaz: Jakou teplotu má vakuum? Má vůbec nějakou teplotu? (Ensy)

Odpověď: V nejjednodušším přiblížení je vakuum prázdný prostor, "obsahuje" NIC. Teplota je charakteristická vlastnost "něčeho".. Tedy vakuum nemá teplotu.V některých složitějších fyzikálních teoriích se ale můžete setkat hodnotou 0 K pro teplotu vakua.
(M.Urbanová)   >>>  

79) Zvuk02. 10. 2002

Dotaz: Potřebovala bych ještě dneska 29.9.2002 odpovědět na otázku co je to zvuk, jak vzniká,... Potřebuju toho co nejvíc na referát do fyziky. (Markéta)

Odpověď: Milá Markéto, zvuk je každé mechanické vlnení hmotného prostredí, které pusobí na lidské ucho a vyvolává v nem zvukový vjem. Frekvence tohoto vlnení je v mezích 16 - 16 000 kHz. Neslyšitelné zvuky pod dolní mezí nazýváme infrazvuk, nad horní mezí jde o ultrazvuk. Spoustu duležitých a zajímavých informací pro svuj referát najdete na webu na stránkách: http://www.steiner.cz/david/akustika/, o záznamu zvuku se doctete na: http://mujweb.cz/www/historie_zvuku/, jestli se zvuk šírí i ve vakuu je jeden ze starších dotazu Odpovedny (viz. níže), další informace se doctete v ucebnicích fyziky pro základní i strední školy. Pokud Vám tyto informace nestací, dejte mi vědět.
(M.Urbanová)   >>>  

80) Relativita26. 07. 2002

Dotaz: Mám dotaz, týkající se teorie relativity. Tento případ se často na přednáškách/učebnicích zmiňuje a je bez vysvětlení brán jako "fakt", přičemž mě to stále není jasné. Představme si člověka, který stojí vedle kolejí, po kterých jede vlak rychlostí blížící se rychlosti světla V tom vlaku je zdroj světla. V okamžiku, kdy zdroj světla míjí pozorovatele, se pozorovatel přemístí za vlak a pozoruje zdroj světla v posledním vagónu, který se zrovna rozsvítil. Uvidí tento pozorovatel světlo? A uvidí ho, v případě, že se vlak bude pohybovat rychlostí světla? Proč neplatí princip skládání rychlostí? Světlo je přece "jenom vlnění"? Pro něj to neplatí? Světlo se "prý" pohybuje stále rychlosti c a nic se rychleji pohybovat nemůže... Ani když se ty dvě soustavy navzájem pohybují? (Vladimir Busek)

Odpověď: Milý Vladimíre, světlo má ve vakuu vždycky tutéž rychlost, ať ho vytvoří cokoli (zdroj stojící anebo letící libovolnou podsvětelnou rychlostí) a ať ji měříš v kterékoliv inerciální soustavě. To ber NIKOLI jako (podivný) důsledek speciální teorie relativity, ALE jako experimentální fakt - tedy něco, s čím se musí jakákoliv teorie vyrovnat, má-li být pravdivá. Světlo má prostě stejnou rychlost, ať je ze Slunce, z hvěz nebo z pozemských zdrojů, ať ho měříš ráno nebo večer, ačkoliv se ráno pohybujeme spolu s otáčející se Zemí na rovníku rychlostí 40 000 km za 24 hodin (spočti si číselně, kolik to je v m/s, člověk by to nevěřil! rychleji než zvuk) a navečer stejnou rychlostí opačným směrem, na jaře jako na podzim, ačkoliv rychlost Země na dráze kolem Slunce je 2.pí.150 000 000 km za 1 rok (a to je bezmála úctyhodných 30 km/s !). Tohle musí vysvětlit každá teorie, která chce popisovat jevy v blízkosti rychlosti světla. No a Lorentzovy vzorce pro transformaci - přechod z jedné soustavy do druhé - to umějí. Galileiho jednodušší vzorce nikoli.
Z tohoto experimentálního faktu je vidět, že skládání rychlostí nemůže být (při těchto rychlostech) popsáno sčítáním, ale jinak. V Galileově transformaci (GT) se rychlosti sčítají a čas v každé soustavě "tiká" stejně rychle: co je současné v jednom systému, je současné i v jiném. O soumístnosti to neplatí - co je soumístné v jedoucím vlaku (např. že si na tomtéž místě objednám kávu, dostanu, vypiju a zaplatím), není soumístné vůči Zemi (je to na různých místech zemského povrchu, třeba v různých městech). Současnost je v GT invariantní, soumístnost nikoli. V Lorentzově transformaci (LT) není invariantní ani soumístnost, ani současnost. Co je ale invariantní, je "čtyřinterval":
 ds . ds = dx . dx + dy . dy + dz . dz - c.dt . c. dt ,
tedy čtverec vzdálenosti dvou událostí, zmenšený o čtverec vzdálenosti, kterou by světlo uletělo za dobu, která mezi událostmi uplynula. Podrobný výklad z obrázky a fotografiemi, na úrovni srozumitelné na střední škole je např. v učebnici FYZIKA (Halliday, Resnick, Walker, např. PROMETHEUS, 2001), ve čtvrtém dílu - celá kapitola 38 Relativita.
(J.Obdržálek)   >>>  

81) Máslo v mikrovlnce11. 07. 2002

Dotaz: Proč se máslo v mikrovlnné troubě ohřívá od středu? Kam uteklo teplo z Apolla13, když okolo je nejlepší izolant=vakum? (David Kir±ner)

Odpověď: Milý kolego, 1) mikrovlny se absorbují v objemu potravin v mikrovlnné troubě, nemám ale hned při ruce údaje o charakteristické hloubce vniku pro jednotlivé materiály, speciálně vaše máslo. V hrubém přiblížení, že se absorbují rovnoměrně, se pak opravdu ohřeje nejdřív střed, protože kraje jsou ochlazovány vzduchem.
2) Vyzářilo se. To funguje i ve vakuu, jinak by se totiž kosmonauti upekli a jiné kosmické objekty taky, protože by akorát pžijímali/y teplo slunečním zářením a neměli/y cestu, jak se tepla naopak zbavit. Mrkněte se na záření absolutně černého tělesa do nějaké knihy o fyzice, kvantitativně je to tam pod heslem Stefan-Boltzmannův zákon.
(J.Dolejší)   >>>  

82) Posuvný proud08. 07. 2002

Dotaz: Můj dotaz souvisí s Maxwellovými rovnicemi - není mi jasné co přesne si mám představit pod posuvným proudem, který Maxwell doplnil do rovnice formulující zákon celkového proudu (kromě toho že díky němu mají rovnice obecnou platnost-tedy platí ve všech polích). A proč je možné ho vyjádřit jako parciální derivaci vektoru elektrické indukce podle času? Pak by mě ještě zajímalo, jestli byla rychlost světla určena poprvé řešením z maxwellových rovnic odvozené vlnové rovnice pomocí permeability a permitivity, nebo pomocí nějakého experimentu. (Petr Pokorný)

Odpověď: Milý pane kolego, možná Vás trochu zklamu, ale takový je život. Třeba ani není nic, co by bylo nutno si "představit". Představa pomůže, ale je vždycky jen jistým modelem, který něco podstatného znázorní, ale něco jiného zakryje nebo naopak přidává něco, co v reálu není. Budete-li svému mladšímu synovci vysvětlovat Vy, co je to elektřina a elektrický proud, asi řeknete něco jako "Elektrony jsou jako malí zelení mužíčci, co pobíhají uvnitř drátů a orientují se tam, kam je zrovna tlačíme vnějším napětím. A to napětí je, jako kdybychom tu trubici zvedli tam, kde má být napětí větší. A ti mužíčci nemůžou zmizet, (takže pro ně platí rovnice kontinuity), navíc je v obvyklých podmínkách ani nemůžeme nějak podstatněji stlačit k sobě, a proto elektrický okruh je vždycky uzavřený, má-li opravdu téci proud I." Jenomže to není tak docela pravda, protože když nabíjíte kondenzátor, tak okruh není uzavřený - obě desky jsou přece odděleny izolátorem! No ale doplníme-li člen Ip (posuvný proud) ke členu I, tak se jím elektrický proud uzavře. To samo o sobě by bylo dobrým důvodem k zavedení. Ale lze i potvrdit, že takto zavedený proud Ip má i všechny další vlastnosti "obyčejného" proudu, např. že vytváří magnetické pole. Proto ho také zavádíme. Říkáme mu ale raději "Maxwellův". To označení "posuvný" je z představ, že existuje všudypřítomný nevažitelný éter, jehož chvění se projevuje jako světlo, jehož vnitřní napětí je dáno elektrickým polem E a deformace (posunutí) se pak jeví jako elektrická indukce D (angl. Displacement = posunutí). Na posuvný proud se nenajde nějaký mechanický model. On totiž existuje i ve vakuu, kde není (z hlediska klasické elektrodynamiky) nic, co by se mohlo posouvat. Ale berme to jako fakt, že doplněním tohoto výrazu se nám náš starý známý proud "zacelí" - že to je právě to, co mu chybělo k dokonalosti. A proč je možné ho vyjádřit jako parciální derivaci vektoru elektrické indukce podle času? No to je právě ten výraz, který by nám chyběl pro rovnici kontinuity.
Rychlost světla byla nejprve změřena v dobách, kdy naoka o světle nebyla vůbec spojována s elektřinou a magneticmem. Až Weber vypočítal, že změny elektromagnetického pole by se měly šířit rychlostí, která se nápadně podobala rychlosti světla, a skvěle (tj. odvážně, ale pravdivě) z toho vydedukoval, že světlo je elektromagnetické povahy. Přečtete si o tom v učebnicích o historii fyziky.
(J.Obdržálek)   >>>