FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 26 dotazů obsahujících »vlnová«

17) Energie záření20. 03. 2003

Dotaz: Ráda bych se zeptala: 1) zda roste s vlnovou délkou energie záření? 2) na závislost mezi vlnovou délkou a citlivostí u PN fotodetektoru. (Petra Andrýsková)

Odpověď: 1/ Ta otázka je trochu zavádějící. NEJMENŠÍ MNOŽSTVÍ, jakési zrníčko energie (kvantum), které se může předat na frekvenci f, je úměrné této frekvenci : Emin(f) = hf . Vlnová délka je nepřímo úměrná frekvenci, takže čím větší vlnová délka, tím menší je to nejmenší kvantum, které se může předávat. Energie můžu vydat nebo předat nebo přijmout kolik chci, ovšem bude to jen celý počet (zpravidla obrovský) těchto kvant.
 Pokud mám situaci takovou, že se mi hodí vlnový popis, pak vlna s frekvencí f má tvar A = A0.cos(2.pi.f.t + fi0), kde A0 je amplituda, pi = 3,14..., t je čas a fi0 je fázová konstanta; celý výraz v závorce se nazývá fáze. Takováto vlna má energii úměrnou A2 f2, čili při STEJNÉ AMPLITUDĚ roste energie kmitů se čtvercem frekvence (neboli klesá nepřímo úměrně čtverci vlnové délky).
Ptáte-li se ale, jak u konkrétného zdroje vln (třeba u rozžhavené tyče) závisí vyzařovaná energie na vlnové délce, ptáte se na vyzařovací charakteristiku příslušného děje (např. záření černého tělesa). Na to ovšem není žádná univerzální odpověď, to potřebuje znát onen děj.
(J.Obdržálek)

2/ Citlivost (proudová či napěťová) PN fotodiody je v ideálním případě přímo úměrná vlnové délce dopadajícího záření. Pro reálnou fotodiodu existuje dlouhovlnná mez (citlivost u určité vlnové délky prudce klesá k nule) a navíc je ta lineární část snížena vlivem povrchové rekombinace.
(Doc. RNDr. Pavel Moravec, CSc.)   >>>  

18) Vznik ultrafialové záření17. 03. 2003

Dotaz: Potřebovala bych vysvětlit vznik ultrafialového a infračerveného záření. (Karolína Melicharová)

Odpověď: Milá Karolíno, je to vlastně jako vznik světla - jen trochu kratší nebo delší vlnová délka. Nejobvyklejším zdrojem je dostatečně rozehřátý předmět; infrazářič ani nemusí být tak rozpálený. Efektivnějším zdrojem jsou různé výbojky, kde se vytváří jen mnohem užší část spektra. Nízkotlaké dávají poměrně ostré čáry odpovídající přechodům elektronů mezi jednotlivými povolenými hladinami (chcete-li UV, použijte třeba rozšířenou rtuťovou), vysokotlaké dávají širší - pásové - spektrum, a mají větší účinnost. No a tu a tam může vzniknout příslušné záření i jinde při "přeměně energie" - jako třeba při některých chemických reakcích. Fluoreskující či fosforeskující látky zase mohou měnit záření dopadající na ně s jistou vlnovou délkou na záření s vlnovou délkou větší ("červenější").
(J.Obdržálek)   >>>  

19) Rádiové vlny14. 03. 2003

Dotaz: Na jakém principu pracuje rádio a vysílání rádiových vln? (Lukáš Čulák)

Odpověď: Milý Lukáši, rádiové vlny představují část elektromagnetického spektra. V roce 1888 je objevil Heinrich Hertz. Druhy rádiových vln:
Dlouhé vlny - vlnová délka je 1 000 - 10 000 metrů. Šíří se v přízemní vrstvě atmosféry na dálku až několik tisíc kilometrů. Spolehlivé spojení mohou zajistit jen opravdu dlouhé speciální antény (i stovky metrů) a silné vysílací stanice (stovky kW).
Střední vlny - vlnová délka je 100-1 000 metrů. Šíří se ohybem v nižších vrstvách ionosféry (asi 60 - 200 km nad Zemí). Spojení je na střední vzdálenosti a rovněž si vystačí se slabšími vysílači (desítky kW).
Krátké vlny - vlnová délka je 10-100 metrů. Šíří se tzv. přízemní vlnou v přímé viditelnosti vysílače a také odrazem v ionosféře. Vysílací stanice postačí s výkonem desítek watů a lze se dovolat až třeba do Austrálie.
Velmi krátké vlny - vlnová délka je 1-10 metrů. Jedná se o televizní pásmo, jež je šířeno v přímé viditelnosti od vysílače nebo také odrazem v nízkých vrstvách atmosféry. K vysílání (hlavně televizního pásma) jsou třeba velmi vysoké vysílače se značným výkonem.
Mikrovlny - vlnová délka je pod 1 metr. Šíření probíhá jen v přímé viditelnosti od vysílače. V tomto pásmu se šíří signál mobilních telefonů.
Rádiové vlny, které se vysílají a přijímají anténami, je možné modulovat tak, aby nesli informace ve formě hlasu, dat nebo obrazu.
Další informace najdete v mnoha článcích na webu, stačí do vyhladávače napsat příslušné heslo a vybrat si z nabízených článků. Zkuste se také mrknout na skriptum elektroniky: http://lucy.troja.mff.cuni.cz/~tichy/ , v 6. kapitole najdete informace o metodách frekvenční modulace, demodulaci, principech směšování a o rozhlasovém a televizním příjmu.
(M.Urbanová)   >>>  

20) "Délka" fotonu31. 01. 2003

Dotaz: Jaká by byla délka fotonu pro pozorovatele "vezoucího" se na něm? (hubert mazanek)

Odpověď: 1) V celém dalším mluvení míním "světelnou rychlostí" rychlost 299792458 m/s, tedy např. rychlost světla ve vakuu. Světlo v hmotném prostředí je jev mnohem složitější.
2) Termín "délka fotonu" není jasný. Míní se tím vlnová délka (barva světla)? anebo představa, že foton je kulička, mající tím pádem v jednom směru jistou délku?
3) Žádného pozorovatele, který někdy vůči mě stál anebo měl podsvětelnou rychlost, nelze urychlit na rychlost světelnou (a ovšem tím spíše ani na rychlost nadsvětelnou). Byla by k toku potřeba nekonečně velká energie. A pro skutečného pozorovatele, ať se pohybuje vůči mně jakkoli rychle, se světlo pohybuje úplně stejnou rychlostí, jak pro mne. On tedy necítí to, že se - vzhledem ke mně - "blíží rychlosti světla" tak, že by se on sám nějak světlu blížil, např. že by ho doháněl anebo že by mu unikalo pomaleji než mu unikalo dříve.
Ovšem hlavní věc: toto vše NENÍ vlastnost světla, fotonu apod. To je vlastnost prostoročasu (což je právě vlastní objev Einsteinùv; popis "kontrakce délek" znali už dříve Lorentz aj.)
(J.Obdržálek)   >>>  

21) Rozložení vlnění podle vln. délek17. 12. 2002

Dotaz: Potřeboval bych najít nějaký přehled rozložení vlnění podle vlnových délek od zvuku až po laser. Kde bych něco našel? (Tomas Hribal)

Odpověď: Žádné spojité rozložení i se zvukem nikde nenajdete, protože zvuk není elektromagnetické vlnění, ale vlnění částic vzduchu.
druh záření vlnová délka technické střídavé proudy 18000 km - 3000 km
střídavé proudy při telefonování 3000 km - 30 km
rádiové vlny 30 km - 0,03 mm
dlouhé vlny 2000 m - 1000 m
střední vlny 600 m - 150 m
krátké vlny 50 m - 15 m
velmi krátké vlny 15 m - 1 m
mikrovlny 1 m - 0,03 mm
optické záření 0,3 mm - 10 nm
infračervené záření 0,3 mm - 790 nm
viditelné záření 790 nm - 390 nm
ultrafialové záření 400 nm - 10 nm
rentgenové záření 10 nm - 1 pm
záření gama menší než 300 pm
Naše ucho vnímá zvuky v rozmezí: 16 16000 Hz je-li f < 16 Hz jde o infrazvuk, f > 16000 Hz ultrazvuk
(M.Urbanová)   >>>