Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 26 dotazů obsahujících »vlnová«
18) Vznik ultrafialové záření
17. 03. 2003
Dotaz: Potřebovala bych vysvětlit vznik ultrafialového a infračerveného záření. (Karolína Melicharová)
Odpověď: Milá Karolíno,
je to vlastně jako vznik světla - jen trochu kratší nebo delší vlnová
délka. Nejobvyklejším zdrojem je dostatečně rozehřátý předmět; infrazářič
ani nemusí být tak rozpálený. Efektivnějším zdrojem jsou různé výbojky, kde
se vytváří jen mnohem užší část spektra. Nízkotlaké dávají poměrně ostré
čáry odpovídající přechodům elektronů mezi jednotlivými povolenými
hladinami (chcete-li UV, použijte třeba rozšířenou rtuťovou), vysokotlaké
dávají širší - pásové - spektrum, a mají větší účinnost. No a tu a tam může
vzniknout příslušné záření i jinde při "přeměně energie" - jako třeba při
některých chemických reakcích. Fluoreskující či fosforeskující látky zase
mohou měnit záření dopadající na ně s jistou vlnovou délkou na záření s
vlnovou délkou větší ("červenější").
Dotaz: Na jakém principu pracuje rádio a vysílání rádiových vln? (Lukáš Čulák)
Odpověď: Milý Lukáši,
rádiové vlny představují část elektromagnetického spektra. V roce 1888 je objevil Heinrich Hertz.
Druhy rádiových vln:
Dlouhé vlny - vlnová délka je 1 000 - 10 000 metrů. Šíří se v přízemní
vrstvě atmosféry na dálku až několik tisíc kilometrů. Spolehlivé spojení
mohou zajistit jen opravdu dlouhé speciální antény (i stovky metrů) a silné
vysílací stanice (stovky kW).
Střední vlny - vlnová délka je 100-1 000 metrů. Šíří se ohybem v nižších
vrstvách ionosféry (asi 60 - 200 km nad Zemí). Spojení je na střední
vzdálenosti a rovněž si vystačí se slabšími vysílači (desítky kW).
Krátké vlny - vlnová délka je 10-100 metrů. Šíří se tzv. přízemní vlnou
v přímé viditelnosti vysílače a také odrazem v ionosféře. Vysílací
stanice postačí s výkonem desítek watů a lze se dovolat až třeba do
Austrálie.
Velmi krátké vlny - vlnová délka je 1-10 metrů. Jedná se o televizní
pásmo, jež je šířeno v přímé viditelnosti od vysílače nebo také odrazem v
nízkých vrstvách atmosféry. K vysílání (hlavně televizního pásma) jsou
třeba velmi vysoké vysílače se značným výkonem.
Mikrovlny - vlnová délka je pod 1 metr. Šíření probíhá jen v přímé
viditelnosti od vysílače. V tomto pásmu se šíří signál mobilních telefonů.
Rádiové vlny, které se vysílají a
přijímají anténami, je možné modulovat tak, aby nesli informace ve formě
hlasu, dat nebo obrazu.
Další informace najdete v mnoha článcích na webu, stačí do vyhladávače
napsat příslušné heslo a vybrat si z nabízených článků.
Zkuste se také mrknout na skriptum elektroniky:
http://lucy.troja.mff.cuni.cz/~tichy/ ,
v 6. kapitole najdete informace o metodách frekvenční modulace, demodulaci,
principech směšování a o rozhlasovém a televizním příjmu.
Dotaz: Jaká by byla délka fotonu pro pozorovatele "vezoucího" se na něm? (hubert mazanek)
Odpověď: 1) V celém dalším mluvení míním "světelnou rychlostí" rychlost
299792458 m/s, tedy např. rychlost světla ve vakuu. Světlo v hmotném
prostředí je jev mnohem složitější.
2) Termín "délka fotonu" není jasný. Míní se tím vlnová délka (barva
světla)? anebo představa, že foton je kulička, mající tím pádem v jednom
směru jistou délku?
3) Žádného pozorovatele, který někdy vůči mě stál anebo měl
podsvětelnou rychlost, nelze urychlit na rychlost světelnou (a ovšem tím
spíše ani na rychlost nadsvětelnou). Byla by k toku potřeba nekonečně velká
energie. A pro skutečného pozorovatele, ať se pohybuje vůči mně jakkoli
rychle, se světlo pohybuje úplně stejnou rychlostí, jak pro mne. On tedy
necítí to, že se - vzhledem ke mně - "blíží rychlosti světla" tak, že by se
on sám nějak světlu blížil, např. že by ho doháněl anebo že by mu unikalo
pomaleji než mu unikalo dříve.
Ovšem hlavní věc: toto vše NENÍ vlastnost světla, fotonu apod. To je
vlastnost prostoročasu (což je právě vlastní objev Einsteinùv; popis
"kontrakce délek" znali už dříve Lorentz aj.)
Dotaz: Potřeboval bych najít nějaký přehled rozložení vlnění podle vlnových délek
od zvuku až po laser. Kde bych něco našel? (Tomas Hribal)
Odpověď: Žádné spojité rozložení i se zvukem nikde nenajdete, protože zvuk není
elektromagnetické vlnění, ale vlnění částic vzduchu.
druh záření vlnová délka
technické střídavé proudy 18000 km - 3000 km
střídavé proudy při telefonování 3000 km - 30 km
rádiové vlny 30 km - 0,03 mm
dlouhé vlny 2000 m - 1000 m
střední vlny 600 m - 150 m
krátké vlny 50 m - 15 m
velmi krátké vlny 15 m - 1 m
mikrovlny 1 m - 0,03 mm
optické záření 0,3 mm - 10 nm
infračervené záření 0,3 mm - 790 nm
viditelné záření 790 nm - 390 nm
ultrafialové záření 400 nm - 10 nm
rentgenové záření 10 nm - 1 pm
záření gama menší než 300 pm
Naše ucho vnímá zvuky v rozmezí: 16 16000 Hz
je-li f < 16 Hz jde o infrazvuk, f > 16000 Hz ultrazvuk
Dotaz: Dobrý den chtěl bych se zeptat na jeden problém týkající se určení polohy elektronu v prostoru.
Totiž když se snažíme polohu elektronu určit tak, že na něj vystřelíme foton o určité vlnové délce, zjistíme jeho polohu jen přibližně.
Čím bude mít foton delší vlnovou délku, tím méně ovlivní rychlost elektronu, ale tím hůře zjistíme polohu elektronu. Problém je ale v tom, že nechápu to, že čím bude mít foton kratší vlnovou délku, tím přesněji určíme polohu elektronu. Sice kratší vnová délka fotonu ovlivní rychost elektronu dost hodně, ale nechápu jedinou věc, proč je samotná poloha elektronu určena přesněji, když vlnová délka fotonu je kratší.
díky (Robin Muller)
Odpověď: Já se přiznám, že nevím, jak prakticky jedním fotonem změřit polohu elektronů a předpokládám, že autor řádek, které jste měl na mysli, to myslel značně symbolicky. Když chcete studovat strukturu malých objektů nějakým elektromagnetickým vlněním, pak rozlišovací schopnost souvisí s vlnovou délkou - je-li vlnová délka větší než struktura, neuvidíte ji. Proto na malé objekty potřebujete adekvátně krátké vlnové délky, obrazně i na určení polohy elektronů. Tato "optická" zkušenost se také najde v kvantové teorii, kde může být například zformulována v podobě relaci neurčitosti.