Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 26 dotazů obsahujících »vlnová«
23) Maximální vlnová délka elmag.záření
27. 05. 2002
Dotaz: Existuje maximální vlnová délka elektromagnetického záření? (Tomáš Buchta)
Odpověď: Žádná
horní hranice pro vlnovou délku elmg. vlny není. Otázka je
spíš, jak bych mohl účinně detegovat velmi nízké
frekvence. Jestliže legendárním liščím ohonem budu vrtět
10x za sekundu, pak vytvářím elektromagnetické vlny o
frekvenci f =10 Hz, tedy o vlnové délce 30 000 km. Jejich
intenzita a tím i energie bude samozřejmě velmi malá.
Protože se energie elmg. pole mění vždy jen po násobcích
elementárního kvanta hf, pak minimální změna energie je 6,63
. 10-33 J. Anténa by měla být řádově
srovnatelná s vlnovou délkou, tedy desetitisíce kilometrů.
Jak odliším signál od šumu? atd. U těch nejkratších zase
příslušný foton nese hodně velkou energii, a je otázka, jak
ho vytvořit.
Dotaz: Zajímají mě z fyzikálního hlediska všechny veličiny, které vyzařuje topná dečka zahřátá na svém povrchu na cca 38°C. Teoreticky je to cca 10 mikrometrů. Pokud si lehnu na toto zařízení (přímý kontakt) , ještě na mne působí infra záření ? Nebo se pak jedná pouze o přenos tepla. A lze tento přenos tepla klasifikovat taktéž jako infračervené záření ?
(PICKA Pavel)
Odpověď: Infrazáření
(elektromagnetické vlny, daleká infračervená oblast atp.)
zní samozřejmě mnohem vznešeněji, než sálání tepla - že
totiž z dečky sálá teplo. Je to ale přesně totéž je to
jen řečeno jinými slovy. Toto teplo (infrazáření, ... )
přijímáme (a taky sami vydáváme, když máme taky teplotu
38°C), ať jsme s dečkou v mechanickém kontaktu anebo ne.
Pokud jsme ale v kontaktu, tak přijímáme navíc teplo i
vedením, tj. přímým stykem s teplejším předmětem.
Vysílaní infrazáření má samozřejmě širokou škálu
vlnových délek, s maximem odpovídajícím teplotě 38°C, tedy
zhruba 311 K. Z rovnic hf = kT a L = c/f nám vyjde L = ch/kT =
3.108 * 6,63.10-34 / (1,38.1023*311)=
4,6.10-5 m, tedy asi 46 mikrometrů jako vlnová
délka, na níž se toho vyzařuje nejvíc. (Ale samozřejmě se
bohatě vyzařuje i na jiných blízkých vlnových délkách.)
Dotaz: Proč je index lomu světla různý pro různé barvy (na tom stejném rozhraní mezi
prostředími)? Je rychlost šíření světla prostředím ovlivněna vlnovou délkou?
A jestli ano, tak proč? (Jan Toušek)
Odpověď: Je to tak. A je velmi zajímavé (a vůbec ne jednoduché) rozebrat, proč
je vlastně rychlost světla v hmotném prostředí jiná než ve vakuu.
Jakmile zjistíme, proč je jiná, pak už tolik nepřekvapí, že je "jinak
jiná" pro různé frekvence.
Mechanismus šíření světla v hmotném prostředí je takový: prostředí
sestává z kladně i záporně elektricky nabitých částic, které mají úhrnný
náboj (prakticky) nulový a jsou víceméně v dynamické rovnováze. Můžeme
si představit, že elementární části látky jsou elektrické dipóly (např.
kladné jádro + záporné elektrony kolem). Dopadne-li na látku světlo, pak
z mikroskopického hlediska přišlo střídavé elektromagnetické pole (vlna)
o frekvenci f. Dipól je nucen pod vlivem elektrického pole kmitat (a
měnit svůj elektrický moment), protože na zápornou část působí opačná
síla než na kladnou (rozměry dipólu jsou mnohem menší než vlnová délka
světla). Ovšem pokud elektrický dipól kmitá, pak vyzařuje
elektromagnetické vlny stejné frekvence, jakou kmitá (Rayleighův rozptyl
- NIKOLI Comptonův, kde vyzařuje frekvenci jinou než přijal). Je to tedy
jakési "pošli to dál", ale s jistým zdržením: dipól je tvořem hmotnými
(nabitými) částicemi a ty mají samozřejmě jistou setrvačnost. Nakonec to
dopadne tak, že rozkmitaná látka vyzařuje vlny, které se skládají s
dopadající vlnou a ustáleným výsledkem je to, že se dopředu šíří nová
vlna téže frekvence, ale pomaleji. (Tedy v látce s jinou vlnovou délkou
než ve vakuu.) Jakmile přijmete tento rozbor, pak vám nebude moc divné,
že to "zdržení" bude pro různé frekvence různé (tomu se říká disperze
světla) v závislosti na vnitřní struktuře látky, na vlastních
frekvencích částí tvořících látku apod.