FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 92 dotazů obsahujících »vakuu«

14) Závislost teploty vzduchu na nadmořské výšce17. 06. 2008

Dotaz: Zavislost teploty vzduchu na nadmorske vysce Dobry den, chtel bych se zeptat z jakeho duvodu klesa teplota vzduchu s nadmorskou vyskou, mereno do par metru na povrchem zeme. Kdyz vezmu v uvahu, ze teplo pravdepodobne vznika dopadem infracerveneho zareni na zemsky povrch, dale cim je nadmorska vyska vetsi, tim vice zareni dopadne na povrch a take skutecnost, ze vzduch je temer stejny tepelny izolant jako vakuum (tj. husty vzduch, ridky vzduch i vakuum by mely izolovat stejne) tak mi vychazi, ze by ta zavislost mela byt minimalni, ne-li dokonce opacna :) (Petr Helcl)

Odpověď: Teplota povrchu Země je určována dopadem krátkovlnného slunečného záření. Primárním zdrojem tepelné energie atmosféry je výměna tepla mezi zemským povrchem a atmosférou nad ní. Na teplotě vzduchu se dále, ale v poněkud menší míře, podílí absorbce infračerveného (tepelného) záření zemského povrchu. Oba tyto zdroje tedy v důsledku pusobí, že nejvíc tepla je atmosférou přijato v nižších vrstvách, kde je tím pádem její teplota v důsledku vyšší.

Dalo by se namítat, že teplý vzduch je lehčí než studený a proto by měl proudit do vyšších vrstev atmosféry. Tato úvaha je však špatná, poněvadž je to vzduch s menší hustotou, který by se měl takto chovat; a vzduch při povchu Země - navzdory faktu, že je teplejší - má hustotu vyšší, než vzduch ve vyšších vrstvách atmosféry, kde je nižší teplota kompenzována mnohem rychlejším exponenciálním poklesem tlaku.

(Peter Huszar)   >>>  

15) Kmitání a vlnění ve vakuu17. 06. 2008

Dotaz: Dobrý den, měl bych dotaz týkající se akustiky. Pokud bude zdroj vlnění umístěn ve vakuu, tak co se stane se vzniklou energií (vlněním)? Je jasné, že vlnění se nebude šířit. Ale jak říkam, jak se bude chovat vlnění? Bude snad soustředěné v jednom bodu? Nebo snad dokonce se energie vlnění přemění na tepelnou energii? Předem děkuji za odpověď. S pozdravem Petr Jirásek (Petr Jirásek)

Odpověď: Pro jednoduchost si představme obyčejnou ladičku:


Když do jejího dvojitého konce ťukneme, bude vydávat zvuk. Co se vlastně děje? Ťuknutím jsme způsobili, že se kunce ladičky od sebe rychle vzdalují a přibližují (tak rychle, že to očima nepostřehneme - jde to ale ukázat buď na zpomaleném filmovém záběru nebo třeba jednoduchým pokusem). Ťuknutím jsme tedy ladičce dodali energii. Také ze zkušenosti víme, že ladička po chvíli přestane znít, ptejme se tedy, kam se ta energie ztrácí. Důležité jsou zejména dva jevy. První je asi jasný - ladička při svém chvění naráží na vzduch, periodicky jej ve smém okolí svým chvěním/pohybem stlačuje a takto se měnící hustota vzduchu má charakter podélného vlnění šířícího se od ladičky. Prostřednictvím vlnění je ladičce postupně odebírána její kinetická/potenciální (deformační) energie uložená v jejím chvění, kmitání. Když řeknu totéž více lidově, tak ladičku "brzdí" vzduch, do kterého při kmitání naráží.

Druhou příčinou ztráty energie je pak cosi, co by se dalo nazvat jakési "vnitřní tření" v ladičce. To, že se chvěje, vlastně znamená, že se opakovaně trošku deformuje. A tato deformace a následná relaxace do původního stavu se neobejde (jako prakticky nic v libovolném látkovém prostředí) bez ztráty energie - ladička se přitom bude velmi velmi nepatrně zahřívat. Velmi jednoduše řečeno i v ladičče uvnitř materiálu dochází ke tření a ladička se tak při své deformaci v důsledku toho nemřitelně maličko zahřívá.

A jak to bude ve vakuu? První možnost odvodu energie - vlněním, zvukovými vlnami - zde není možná, nebude tedy nastávat. Druhá možnost se bude realizovat i ve vakuu. Výsledkum bude, že ladička nebude vyvolávat žádný slyšitelný zvuk (nemá se čím šířit), bude se jí tedy snáze kmitat/chvět. V důsledku vnitního tření v jejím materálu se ale bude pomalu nepatrně ohřívat na úkor svého chvění, až se její pohyb úplně zastaví. Kinetická/potenciální energie jejího chvěníse tedy plně přemění na vnitřní energii (laicky řečeno na teplo).

(Jakub Jermář)   >>>  

16) Sférická kuřata ve vakuu06. 05. 2008

Dotaz: Farmář má kuřata, která nenesou vejce, zavolá si proto na pomoc fyzika. Po pár dnech bádání přijde fyzik za farmářem a říka: "Našel jsem řešení! Ale platí pouze pro sférická kuřata ve vakuu." Můžete mi prosím vysvětlit, pro by měl být tento vtip vtipný? (pivrnec)

Odpověď: Většina fyzikálních situací je (mají-li být zkoumány důsledně a bez zjednodušování) velmi složitá a obtízně se s nimi pracuje. Ve fyzice proto velmi často zjednodušujeme situaci tak, že spoustu věcí zanedbáme, čímž myšlenkově vytvoříme podobnou, ale výrazně jednodušší situaci, s kterou už umíme počítat. Představte si třeba kouli - tu lze jednoduše popsat/vymezit v prostoru relativně jednoduchou nerovnicí (slovy by říkala to, že do koule patří všechno, co má od nějakého středu vzdálenost menší než daný poloměr). A teď si představte kuře. Dokážete nějak matematicky definovat, co to tako vé kuře je? Kde v prostoru začíná a kde končí? Inu velmi netriviální problém. Když bychom tedy chtěli s kuřady něco počítat, budeme se snažit situaci nějak zjednodušit. Buď z kuřete uděláme tzv. hmotný bod (když nás jenom zajímá, kde je, ale už nás nezajímá třeba, jak se otočí), tuhé těleso (když nás zajímá i to natočení, ale už ne deformace), ... častým zjednodušením ve složitější fyzice je pak tzv. sféricky symetrické těleso (typicky koule).

A proč ve vakuu? Nejjednodušeji se počítá, když nám ten výpočet nekazí žádné vlivy okolních těles, zkrátka když je okolonašeho předmětu zkoumání dokonalé nic... tedy vakuum.

(Jakub Jermář)   >>>  

17) Vakuum a plyny v teploměrech06. 05. 2008

Dotaz: Dobrý den. Pátrám na internetu po odpovědi na otázku, bohužel marně, proč není v teploměru s lihem jako s teploměrnou látkou nad sloupcem lihu vakuum (jako nad rtutí u rtuťového teploměru), nýbrž se vyplňuje plynem, je-li teploměr určen pro měření vyšších teplot? Mohlo by to souviset s jeho sytými či přehřátými parami? (Jan Zaruba)

Odpověď: Ani ve rtuťovém teploměru není nad rtutí dokonalé vakuum, alebrž jsou zde (ikdyž relativně řídké) rtuťové páry. Každá kapalina se bude při dostatečně nízkém tlaku (resp. dostatečně vysoké teplotě) vypařovat a "zaplňovat" případné volné místo, vakuum. U lihu by za vyšších teplot bylo velmi výrazné (teplota varu lihu při běžném tlaku je okolo 78°C), zvýšíme-li tedy tlak v trubici přidáním dalších plynů, zvýší se i teplota varu za takto zvýšeného tlaku a teploměr může být použitelní i pro vyšší teploty.

(Jakub Jermář)   >>>  

18) Teplota ve vakuu13. 03. 2008

Dotaz: Dobrý den. Kdybychom udělali obrovskou neprůhlednou kouli a pak v ní vakuum. Jaká by byla teplota někde v jejím středu? Děkuji (Miroslav Lukáč) (Miroslav Lukáč)

Odpověď: Pokud bude v kouli vakuum, má smysl mluvit o teplotě vakua - tedy o tom, jaká teplota se dá přisoudit elektromagnetickému záření v tomto vakuu (viz definice absolutně černého tělesa). Tato teplota bude po nějakém (tzv. relaxačním) čase prakticky tovna teplotě okolí. Při pokojové teplotě okolí lze tedy očekávat pokojovou teplotu.

(Jakub Jermář)   >>>