FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 22 dotazů obsahujících »dopadající«

15) Barva topení a chladiče ledničky03. 12. 2003

Dotaz: Proč je topení bílé a chladič ledničky černý? (Anežka Horáková)

Odpověď: Černá barva způsobuje, že těleso lépe absorbuje dopadající záření (světelné i tepelné), a což je pro leckoho překvapivé, že také lépe teplo vyzařuje. Proto se chladiče dělají černé. Radiátor topení také potřebuje předávat teplo do okolí, ale asi (nejsem expert na topení) se počítá s tím, že podstatnou roli bude hrát ohřívání vzduchu v kontaktu se žebry radiátoru (zde barva nerozhoduje) a pak přenos tepla prouděním tohoto vzduchu. Estetická stránka patrně převažuje nad přínosem zvýšeného přenosu tepla v případě tmavého radiátoru.
(J.Dolejší)

Reakce na odpověď:
V odpovědi uvádíte, ze barva je důležitá pro efektivitu chladiče. Odkazujete se na Planckův zákon. Pořád ale nerozumím, proč tomu tak je. Můžete to rozvést? Bílý chladič vydává záření o vyšší vlnové délce, a proto je hustota zářivého toku menší? Nevydává se většina tepla v infračerveném spektru?

Odpověď:
Má-li chladič nějakou barvu, znamená to, že tuto barvu odráží více než ostatní (proto ho v této barvě taky vidíme). Uvážíme-li situaci v rovnovážném stavu, pak zvýšená emise na jisté vlnové délce musí být spjata i se zvýšenou absorbcí této vlnové délky, aby totiž předměty téže teploty, ale různých barev mohly být spolu v rovnováze. Obvyklá situace chladiče však není rovnovážný stav: chladič je spojen s něčím o teplotě výrazně vyšší než okolí a disipuje do okolí teplo. Pak je ovšem nejvýhodnější chladič "všech barev", černý, který bude co nejvíc vyzařovat světlo všech vlnových délek. (Samozřejmě, že by v případě teplejšího okolí naopak pohlcoval světlo i teplo nejrychleji - ale chladič je zpravidla v okolí chladnějším, než je sám.)
(J.Obdržálek)   >>>  

16) Proč světluška svítí19. 05. 2003

Dotaz: Na jedné debrujárské schůzce jsme narazili na problém, proč svítí svatojánské mušky. Mohli byste mi prosím pomoci s vysvětlením? (Rostislav Petr)

Odpověď: Ke vzniku luminiscence je třeba dodat látce energii. Tato energie může být různá a podle jejího původu rozlišujeme různé druhy luminiscence:
fotoluminiscence - energii dodává ultrafialové nebo viditelné světlo
elektroluminiscence - zdrojem energie je elektrické pole nebo elektrický proud
katodoluminiscence - vyvolává ji svazek elektronů dopadající na obrazovku televizoru
radioluminiscence - původcem jsou radioaktivní látky
sonoluminiscence - je vyvolána ultrazvukem
triboluminiscenci - původ má v mechanické deformaci
chemiluminiscence a bioluminiscence - vyvolávají ji chemické procesy probíhající v živých organismech.
Základní krok k pochopení jevů bioluminiscence učinil biolog Raphaél Dubois, který odhalil, že světlo vzniká během zvláštní biochemické reakce, kterou lze shrnout takto:
luciferin + kyslík -----(luciferáza)-----> oxyluciferin + světlo
Luciferin reaguje s kyslíkem díky enzymu luciferáze, který hraje roli katalyzátoru chemické reakce. Tím vznikne oxyluciferin ve stavu energeticky excitovaném, což dovoluje vyzařování světla. Další podrobnější informace se dočtete například na této stránce: http://www.quido.cz/100/biolum.htm .
(J.Burešová, M.Urbanová)   >>>  

17) Energie záření20. 03. 2003

Dotaz: Ráda bych se zeptala: 1) zda roste s vlnovou délkou energie záření? 2) na závislost mezi vlnovou délkou a citlivostí u PN fotodetektoru. (Petra Andrýsková)

Odpověď: 1/ Ta otázka je trochu zavádějící. NEJMENŠÍ MNOŽSTVÍ, jakési zrníčko energie (kvantum), které se může předat na frekvenci f, je úměrné této frekvenci : Emin(f) = hf . Vlnová délka je nepřímo úměrná frekvenci, takže čím větší vlnová délka, tím menší je to nejmenší kvantum, které se může předávat. Energie můžu vydat nebo předat nebo přijmout kolik chci, ovšem bude to jen celý počet (zpravidla obrovský) těchto kvant.
 Pokud mám situaci takovou, že se mi hodí vlnový popis, pak vlna s frekvencí f má tvar A = A0.cos(2.pi.f.t + fi0), kde A0 je amplituda, pi = 3,14..., t je čas a fi0 je fázová konstanta; celý výraz v závorce se nazývá fáze. Takováto vlna má energii úměrnou A2 f2, čili při STEJNÉ AMPLITUDĚ roste energie kmitů se čtvercem frekvence (neboli klesá nepřímo úměrně čtverci vlnové délky).
Ptáte-li se ale, jak u konkrétného zdroje vln (třeba u rozžhavené tyče) závisí vyzařovaná energie na vlnové délce, ptáte se na vyzařovací charakteristiku příslušného děje (např. záření černého tělesa). Na to ovšem není žádná univerzální odpověď, to potřebuje znát onen děj.
(J.Obdržálek)

2/ Citlivost (proudová či napěťová) PN fotodiody je v ideálním případě přímo úměrná vlnové délce dopadajícího záření. Pro reálnou fotodiodu existuje dlouhovlnná mez (citlivost u určité vlnové délky prudce klesá k nule) a navíc je ta lineární část snížena vlivem povrchové rekombinace.
(Doc. RNDr. Pavel Moravec, CSc.)   >>>  

18) Vznik ultrafialové záření17. 03. 2003

Dotaz: Potřebovala bych vysvětlit vznik ultrafialového a infračerveného záření. (Karolína Melicharová)

Odpověď: Milá Karolíno, je to vlastně jako vznik světla - jen trochu kratší nebo delší vlnová délka. Nejobvyklejším zdrojem je dostatečně rozehřátý předmět; infrazářič ani nemusí být tak rozpálený. Efektivnějším zdrojem jsou různé výbojky, kde se vytváří jen mnohem užší část spektra. Nízkotlaké dávají poměrně ostré čáry odpovídající přechodům elektronů mezi jednotlivými povolenými hladinami (chcete-li UV, použijte třeba rozšířenou rtuťovou), vysokotlaké dávají širší - pásové - spektrum, a mají větší účinnost. No a tu a tam může vzniknout příslušné záření i jinde při "přeměně energie" - jako třeba při některých chemických reakcích. Fluoreskující či fosforeskující látky zase mohou měnit záření dopadající na ně s jistou vlnovou délkou na záření s vlnovou délkou větší ("červenější").
(J.Obdržálek)   >>>  

19) Energie elmag.vlny17. 12. 2002

Dotaz: Představte si tenkou vrstvu, dopadá na ni z jedné strany světlo, odráží se jak od jedné tak od druhé strany vrstvy, pokud bude mít vrstva správnou tloušťku tak odražené vlnění zinterferuje a zanikne. Zajímalo by mě, jestli opravdu v tomto případě zanikne elektromagnetické vlnění a kam se ztratí energie, kterou nese. (Tomáš Kučera)

Odpověď: Zanedbáme-li pohlcování světla, pak se energie elektromagnetické vlny zachovává. Na rozhraní se ovšem dělí energie vlny dopadající mezi energii vlny odražené a procházející. Najděte si v učebnicích elektromagnetického pole odvození Fresnelových vzorců, to je přesně toto.
(J.Obdržálek)   >>>