FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 1493 dotazů

208) Pára nad hrncem02. 03. 2008

Dotaz: Dobry den, chtel bych se zeptat, proc se z hrnce uvolnuje para, i kdyz se voda nevari, je to kvuli odparovani vody v kontaktu z rozpalenym hrncem? A potom by mne tajimalo proc se mnozstvi pary zvysi bezprostredne potom,co vypnu plyn na sporaku. Predem dekuji za odpoved (Michal Šárka)

Odpověď: Vypařování probíhá při libovolné teplotě, jeho míra ovšem s teplotou prudce roste. Jenže pozor, nezávisí jenom na teplotě, ale také na množství vody obsažené ve vzduchu nad hrncem (takzvané vlhkosti vzduchu).

Z mikroskopického hlediska si to můžete představit takto: Molekuly v kapalině i ve vzduchu se neustále chaoticky pohybují (tím rychleji, čím větší je teplota – ve skutečnosti je to spíše obráceně, totiž že čím rychlejší je chaotický pohyb částic, tím větší teplotu látka má). Některé částice při tomto pohybu "vyskočí" z kapaliny a stanou se součástí vodních par (vypařování), jiné (klidně současně) přejdou ze vzduchu do vody v hrnci (kondenzace). Obojí se děje neustále a vzhledem k obrovskému množství molekul v litru vody (řádově 1025) velmi mnohokrát každou sekundu. Je to vlastně difúze molekul plynu do kapaliny a obráceně.

Pokud častěji vyjdou molekuly z vody, než obráceně, pozorujeme to jako vypařování kapaliny &ndash její množství v hrci se zmenšuje, vlhkost okolního vzduchu naopak roste. Čím více je ale vodních par nad hrncem, tím častěji některé molekuly přejdou při chaotickém tepelném pohybu ze vzduchu zpátky do kapaliny. Vypařování se tedy zpomaluje.

Může se stát, že po čase vlhkost vzduchu vzroste natolik, že při dané teplotě (a tedy "hemživosti" částic) už do kapaliny vstoupí ze vzduchu za jednotku času právě tolik molekul, kolik jich kapalinu za stejný čas opustilo. Mluvíme o stavu dynamické rovnováhy (z makroskopického hlediska je to rovnováha, protože námi pozorovaná množství kapaliny a par se nemění, ale z mikroskopického hlediska i nadále dochází k vzájemnému míšení, jenže je to statisticky vzato "kus za kus" – proto dynamická rovnováha namísto statické rovnováhy). Takzvaná relativní vlhkost v tomto případě dosáhla 100 %.

Kdybychom nyní teplotu zvýšili, rovnováha by se opět porušila, relativní vlhkost by klesla pod 100 % a my bychom mohli pozorovat další vypařování. Funguje to i opačně. Pokud teplotu snížíme, může se relativní vlhkost zvýšit dostatečně k tomu, aby docházelo ke kondenzaci. Takto mohou vznikat drobné kapičky přímo ve vlhkém vzduchu (přesně tak vzniká déšť). Nad hrncem tyto drobné kapičky pozorujeme jako mlhu, laiky označovanou slovem "pára" (ve fyzice má slovo pára význam plynu, mlze &ndash tedy páře s kapičkami &ndash fyzikové někdy říkají "mokrá pára").

Voda tedy k tomu, aby se vypařovala, nemusí vřít. Nicméně při varu se vypařuje nejintenzivněji.

A proč pozorujeme mlhu nad hrncem bezprostředně po vypnutí plynu? Domnívám se, že je to právě kvůli onomu náhlému snížení teploty. Tím vzroste relativní vlhkost vzduchu nad hrncem a pára začne kondenzovat do drobných kapiček, což pozorujeme jako mlhu. Stejný jev nastavá v zimě, kdy nám jde "pára" (tedy mlha) od úst.

O mikroskopickém pohledu na vypařování jsme zde už jednou psali, můžete se podívat sem. Pokud vás zajímá více o varu, rovněž o tom jsme zde už psali, klikněte sem.

(Pavel Böhm)   >>>  

209) Různé materiály chladiče procesoru29. 02. 2008

Dotaz: Dobrý den, dotaz zní, zda hliníkový chladič (typicky na CPU v PC) chladí jinak (lépe nebo hůře), než tvarově identický vyrobený z mědi. Jestli problému správné rozumím, závisí jen na barvě a ploše chladiče, materiál ovlivňuje pouze to, jak rychle soustava dosáhne ustáleného stavu (alespoň v případě sálání, nevím ale jak u proudění, které zde hraje velkou roli). Děkuji za osvětlení nebo třeba i jen nápovědu, link. (Ren)

Odpověď: Chlazení chladičem bereme jako stacionární děj, tj. ustálený stav teplot se stálými toky tepla. I při stejném "topném příkonu" součástky a stejném tvaru chladiče a stejném způsobu chlazení resp. sálání z chladiče i v ustáleném stavu ZÁLEŽÍ na materiálu chladiče, protože pro jiný materiál chladiče se na povrchu chladiče ustálí jiné teploty - čím je materiál vodivější, tím budou teploty nižší.

Je potřeba rozeznávat vodivost tepelnou (charakterizující přenos tepla = energie) a teplotní (charakterizující změnu teploty), dále vedení tepla vnitřní (např. uvnitř zahřívané tyče) a vnější (přenos tepla z tyče ven, tj. přes hranici dvou prostředí); o vnějším předpokládejme, že za jinak stejných podmínek - vlastnosti povrchu a okolního prostředí - bude rovněž stejné.

Představme si vedení tepla deskou. Nalevo ji zahřívá jistý děj, který jí dodává stálý tepelný příkon W (třeba elektrická spirála) a udržuje tam v rovnováze stálou teplota T2. Na druhé straně desky je odvod + sálání tepla a udržuje se tam nižší teplota T1 díky chladicímu prostředí. Nastala-li již rovnováha, vejde dovnitř zleva za danou dobu ∆t přesně to teplo, co za tutéž dobu odejde zprava. Tepelný příkon W = Q / ∆t je roven tepelnému "výkonu" (do chladicího prostředí), jinak by nebyla rovnováha a teplota tyče by se s časem měnila.

Nezabýváme se tou dobou, než se vše dostalo do rovnováhy (tato doba roste s celkovou tepelnou kapacitou desky). Deska je již nyní ve stacionární rovnováze, tj. prohřátá se stálým teplotním průběhem ).

V tabulkách je pro měď a hliník uveden součinitel *tepelné vodivosti* λ (thermal conductivity), což je λ = Q l / (S ∆t / ∆T) s označením ∆ je přírůstek resp. změna, Q = celkové teplo prošlé deskou za dobu ∆t, l = tloušťka desky vzorku, S = plocha desky, ∆T = T2 - T1, tedy rozdíl teplot na opbou stranách desky.

Příslušný součinitel *teplotní vodivosti* "a" (thermal diffusivity) je a = λ / (ρ cp) , kde ρ je objemová hmotnost (hustota) a cp měrná tepelná kapacita při stálém tlaku, udává průběh teploty.

Ve stařičkých Valouchových tabulkách (v CGS), které mám právě po ruce, jsem našel hodnoty:

  kov         λ         cp         ρ         "a"(vypočteno)  
  Al   0,503   0,214   2,70   0,912
  Cu   0,92   0,094   8,9   1,1


Poměr přenášených tepel za jinak stejné konstrukce bude Cu:Al=0,92:0,503.

(Jan Obdržálek)   >>>  

210) Zachování energie a rozpínání vesmíru27. 02. 2008

Dotaz: Dobrý den, zde: http://fyzweb.cuni.cz/new/clanky/index.php?id=106 píšete: "Podle základního modelu velkého třesku náš vesmír vznikl ze singularity, bodové oblasti prostoru „nabušené energií“. Proto tato oblast tvořila velmi horké a velmi husté prostředí, v němž byla gravitace natolik silná, že vesmír byl zakřiven sám v sobě s poloměrem křivosti jen 10-34 m."
Mohli byste mi prosím sdělit, kde se tato energie vzala? Podle zákona o zachování energie by součet všech energií měl být nulový, nelze mít energii z ničeho. Tedy někde je stejné množství chybějící energie. Tušíte aspoň kde se nachází a jaké má vlastnosti (dle selského rozumu by měla mít vlastnosti přesně opačné než "ta naše")?   (Jaroslav)

Odpověď: Zákon zachování energie je mocné pravidlo, s nímž se potkáváme v běžném životě prakticky všude a již mnohokrát vedl k novým objevům. Mohlo by se tedy zdát, že jde o univerzální a všude platný zákon - ale není tomu tak. Existují děje, při nichž se energie nezachovává a rozpínání vesmíru je jedním z takových dějů. Trochu více se o tom dočtete například v článku Jiřího Jersáka v časopise Vesmír (2008/1).

Tvrzení, že zákon zachování energie neplatí úplně vždy, by mohl vést k domněnce, že by přeci jen bylo možné sestavit perpetuum mobile. Bohužel, nebylo - případy, kdy zákon zachování energie neplatí se k dolování a následnému zužitkování energie použít nedají.

(Jakub Jermář)   >>>  

211) Kdy začíná jaro?21. 02. 2008

Dotaz: Zemi trvá jeden oběh kolem Slunce asi 365 a čtvrt dne. To by znamenalo, že když slavíme půlnoc 31.prosince, tak Země v tu chvíli ještě neoběhla úplně celou otočku od Silvestrovské půlnoci minulého roku (to doběhne až někdy v 6 hodin ráno 1.ledna). Je to pravda? Posouvá se stejným způsobem třeba i okamžik jarní rovnodennosti? Děkuji za odpověď. (Frantisek Vejvoda)

Odpověď: Ano, okamžik jarní rovnodennosti se vůči našemu civilnímu kalendáři posouvá v nepřestupné roky o zhruba o 5 hodin a 49 minut kupředu, vpřetupném roce pak o 17 hodin 26 minut zpět dozadu. Jak si lze snadno zpočítat, není po 4 letech vše vyrovnáno, proto se v nyní používaném (gregoriánském) kalendári zavádí korekce. ta spočívá v tom, že není přestupný úplně každý čtvrtý rok, jsou tedy definovány výjimky (je-li letopočet dělitení 100 a zároveň není-li dělitelný 400, potom se o přestupný rok nejedná).

Více se o jarní rovnodennosti dozvíte na:
(Jakub Jermář)   >>>  

212) Zpětný ráz a dostřel děla21. 02. 2008

Dotaz: Tvrzení: Pokud zamezíme dělu možnost zpětného rázu, pak dělová koule doletí mnohem dál. Prosím o vysvětlení tohoto tvrzení. Každého jako první vysvětlení napadne zákon zachování hybnosti, ale mně se toto vysvětlení nezdá být pravdivé proto, že připevněné dělo se sice nepohne vzhledem k Zemi, ale pohne s dělem celá Země. Nejedná se spíš o efektivnější využití energie získané při zapálení střelného prachu? Děkuji za odpověď. Kratochvílová (Dana Kratochvílová)

Odpověď: Ano, skutečně jde o lepší využití energie. Pokud zamezíme zpětnému rázu, bude se energie výbuchu střelného prachu předávat zejména urychlované dělové kouli, zatímco při zpětném rázu by se zpotřebovávala i na urychlování děla v protisměru.

(Jakub Jermář)   >>>