FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 1493 dotazů

222) Gravitační čočka11. 02. 2008

Dotaz: Můžete mi prosím vás podrobněji vysvětlit co je gravitační čočka a jaký má vliv na okolní tělesa? Dále mě také zajímá efekt gravitační čočky. Děkuji Kynčlová (Marika Kynčlová)

Odpověď: O jevu tzv. gravitační čočky se hovoří tehdy, pozorujeme-li nějaký zdroj záření (typicky vzdálená galaxie) a mezi námi a zdrojem se nachází velmi hmotné těleso (typycky opět galaxie). Při průletu světla vzdálenějšího zdroje okolo gravitujícího tělesa dochází k ohybu jeho paprsků podobně jako při průchodu světla například skleněnou čočkou - odtud i název.



Jev předpověděl Albert Einstein v roce 1936. Jsou-li oba objekty a pozorovatel dokonale na přímce, vznikne jako obraz vzdáleného zdroje tzv. Einsteinův prstenec, pokud jsou objekty mírně vyosené, vznikne buď oblouk nebo několikanásobný obraz vzdáleného zdoje. Podívejte se na čáry a oblouky například na fotografii kupy galaxií (Abel 2218) pořízené v roce 1995 pomocí Hubbleova vesmírného dalekohledu:



Foto obrázky byly převzaty ze serveru Aldebaran, který lze doporučit i jako zdroj dalších a podrobnějších informací, viz
(Jakub Jermář)   >>>  

223) Provrtaná Země III11. 02. 2008

Dotaz: Zajímalo by mě, jak se bude chovat těleso, které by bylo spuštěno volným pádem na Severním pólu skrz hypotetický otvor provrtaný skrz Zemi s vyústěním na Jižním pólu. Děkuji. (Martin Jirousek)

Odpověď: Za přepodladu, že by se Země v oné šachtě skrz Zemi bylo vakuum (abychom nemuseli složitě počítat s odporem vzduchu), padalo by těleso ke středu stále rychleji (rychlost by se zvětšovala ale čím dál méně, tj. zrychlení by klesalo), až by ve středu Země byla rychlost tělesa maximální (okolo 8 km za sekundu) a zrychlení nulové (gravitační zrychlení ve středu Země je nulové). Těleso má ale nějakou setrvačnost a tak by pokračovalo dále směrem k jižnímu pólu. Jeho rychlost by klesala (bylo by bržděno rostoucí gravitační silou) až (v ideálním případě) by se zastavilo u povrchu Země na jižním pólu. A okamžitě by zase začalo padat šachtou zpět...

V ideálním případě by se tedy těleso chovalo jako harmonický oscilátor a do nekonečna by kmitalo od pólu k pólu s periodou několik desítek minut.

(Jakub Jermář)   >>>  

224) Radioaktivita nezávisí na teplotě11. 02. 2008

Dotaz: Jak závisí radioaktivita radionuklidu na teplotě? Je radionuklid radioaktivní i za teplot blížících se teplotě absolutní nuly? (Mirek Moravec)

Odpověď: Není nám známa žádná zásislost radioaktivity na teplotě (s výjimkou extrémních tlaků a teplot panujících například při jaderné fůzi). Radionuklid by tedy měl být stejně aktivní při běžné teplotě i v prostředí, kde lze teplotu označit jako blízkou absolutní nule.

(Jakub Jermář)   >>>  

225) Kosmické záření11. 02. 2008

Dotaz: Dobrý den, mám jeden dotaz ohledně kosmického záření. Jaká je jeho vlnová délka? děkuji za odpověď! (Klára)

Odpověď: Jako kosmické záření se obvykle označují hlavně proudy protonů a dalších rychle se pohybujících částic pocházejících jak ze Slunce, tak galaktického i extragalaktického původu. Jejich energie a rychlosti jsou přitom značně různé, nemá tedy smysl ani mluvit o nějaké konkrétní de Broglieho vlnové délce, ktrou bychom těmto částicím mohli připsat.

Více se o kosmickém záření dozvíte například na
(Jakub Jermář)   >>>  

226) Světélkující předměty08. 02. 2008

Dotaz: Dobrý den, zajímalo by mne co způsobuje některých věcí ve tmě. Například ty různé svíticí stavebnice , hračky, gumy. Děkuji (Martin Slepička)

Odpověď: V případě, že je předmět nejprve nutno osvítit, aby pak ve tmě světélkoval, jedná se o fosforescenci. Takto fungují například "hvězdičky", které se lepí na strop dětského pokoje, nebo svítící gumové náramky. Fosforescence je jev, kdy vhodná chemická látka (používá se hlinitan strontnatý aktivovaný europiem, dříve též sulfid zinečnatý aktivovaný mědí) absorbuje světlo, tím se její molekuly dostanou do stavu o vyšší energii (excitovaný stav), ve kterém se ovšem udrží jen určitou dobu - u fosforescence může podle druhu látky jít o setiny sekundy až dny. Potom se molekuly vrátí zpět do původního stavu a přebývající energii vyzáří ve formě světla, které pozorujeme jako světélkování - protože je jen slabé, je lepší je pozorovat ve tmě.

Podobným případem je fluorescence, kdy ovšem dochází k návratu molekul a vyzáření světla téměř okamžitě po osvícení, tj. světélkování zmizí, jakmile na látku nesvítíme. Takto fungují optické zjasňovače v pracích prášcích a ve zvýrazňovacích fixech, které svítí viditelným světlem, pokud je ozařujeme "neviditelným" UV světlem (je obsaženo i ve slunečním světle). Pozorujeme to výrazně na diskotékách (bílá trička tam září) nebo při zkoušení pravosti bankovek.

Energii pro světélkování lze látce dodat i jinak než osvícením - například vhodnou chemickou reakcí, teplotou, radioaktivním rozpadem jiné látky či mechanickým tlakem a pod. Pro účely, které popisujete v otázce, je ovšem nejpraktičnějším způsobem právě osvícení.

(Hanka Böhmová)   >>>