FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 1493 dotazů

244) Pulzary26. 12. 2007

Dotaz: Chtěl bych se zeptat, jakým způsobem pulsary emitují tak úzký paprsek záření? Září tímto způsobem i ostatní neutronové hvězdy? (Martin)

Odpověď: Pulzar je neutronová hvězda, tedy hvězda vzniklá zhroucením dostatečně hmotné "obyčejné" hvězdy. "Obyčejná" hvězda, správněji tzv. hvězda hlavní posloupnosti je například naše Slunce. V takové hvězdě probíhají termojaderné reakce, které jednak dodávají hvězdě energii, aby mohla zářit, krom toho ale také pomáhají udržet hvězdu stabilní (tlak vznikajícího záření působí proti gravitačním silám). Když hvězda ve svém jádru vypotřebuje jaderné palivo (zejména vodík, později u větších hvězd i helium a další lehké prvky) a nedokáže již vzdorovat vlastní gravitaci, začne se gravitačně hroutit. Menší a střdní hvězdy (s hmotností do přibližně 1,4 násobku hmotnosti Slunce - to je tzv. Chandrasekharova mez) se zhroutí do tzv. bílého trpaslíka - hvězdy o poloměru asi 10 000 km. Zde jejich hroucení zastaví tlak elektronového plynu (kvantově mechanický jev). Bílý trpaslík pak už jen velmi pomalu chladne a tím postupně přestává tepelně zářit.

Hvězdy mnohonásobně hmotnější než hmotnost Slunce se zhroutí úplně a vznikne tzv. černá díra. A někde mezi tím, jsou hvězdy, které jsou jen o něco málo hmotnější než ona Chandrasekharova mez (1,4 hmotnosti Slunce). Ty už jsou příliš hmotné na to, aby je udržel tlak elektronového plynu a hroutí se až na poloměr několika desítek kilometrů, kde je hroucení zastaveno tzv. tlakem neutronového plynu. Vzniká tak tzv. neutronová hvězda.

Pulzar je otáčející se neutronová hvězda se silným magnetickým polem. Nějaké magnetické pole má prakticky každá hvězda. Když se pak hvězda zhroutí - smrskne z poloměru několika miliónů kilometrů na několik desítek kilometrů, magnetické pole se značně zahustí. Stejně tak prakticky každá hvězda rotuje (naše Slunce se otočí přibližně jednou za 25 dní) a při hroucení se i rotace značně (nepřímo úměrně poloměru) urychlí. Neutronová hvězda pak zárí zejména ve směru svého magnetického pole, přičemž toto pole rotuje společně s hvězdou, takže neutronová hvězda vysílá do vesmíru podobně, jako otáčejicí se maják - jejich světlo/záření vidíme v podstatě jen tehdy, když je jejich svazek paprsků nasměrován k nám.


Modře je znázorněn emitovaný svazek záření, bíle magnetické siločáry a zeleně osa rotace pulzaru.
Zdroj: wikipedia.org

Tímto způsobem září všechny neutronové hvězdy, které ve vesmíru pozorujeme. Neutronové hvězdy, které by takto nezářily, totiž zatím nijak jinak detekovat neumíme (zejména proto, že neutronová hvězda je rozměrově velmi velmi malá a svítí tedy jen velmi slaboučce). Teoreticky je možné, aby existovala nerotující neutronová hvězda (tj. je to z pohledu fyzikálních zákonů to není apriori zcela vyloučené).

(Jakub Jermář)   >>>  

245) Miska s mrznoucí vodou26. 12. 2007

Dotaz: Dobrý den, prosím Vás, když dám ven do mrazu nádobu s vodou pro psa, zmrzne rychleji když ta voda bude teplá nebo studená? Moc děkuji za odpověď a přeji hezký den. (Anička Wolfová)

Odpověď: Záleží na konkrétních podmínkách. Pokud dáte vodu do plastové nebo dřevěné misky a tu položíte na kamenné schody, zrmzne velmi pravděpodobně původně teplejší voda později. Lze si ale představit takové speciální podmínky, za kterých by to bylo obráceně, tedy že původně vyšší teplota vody by její mrznutí uspíšila. To by mohlo nastat třeba při položení kovové (a tedy dobře tepelně vodivé) misky na schody, které bývají v zimě pokryté vrstvou ledu a sněhu. Miska by se do takového podkladu mohla částečně protavit, čímž by získala lepší tepelný kontakt s okolím a voda by o teplo přišla rychleji.

Pokud budete v této oblasti experimentovat, budeme rádi, pošlete-li nám zprávu o tom, jak to dopadlo. Jen dejte pozor, aby si pes nespálil čenich ;o).

Více si o mrznutí horké a studené vody můžete přečíst například v Odpovědně.

(Pavel Böhm)   >>>  

246) Rychlost chladnutí jídla20. 12. 2007

Dotaz: Tuto otázku mám zodpovědět: Všimli jste si už někdy, že některé jídlo vydrží teplé mnohem déle než jiné? Například jablečná náplň horkého koláče spálí náš jazyk, zatímco kůrka i těsto kolem se už dají jíst. Také dušená cibule nebo tykev zůstane horká ještě hodně dlouho. Toust můžeme začít jíst pár vteřin poté co jej vytáhneme z tousteru. Sundáme-li však vařicí polévku z plotny, musíme čekat několik minut abychom si nespálili jazyk. Pokuste se vysvětlit. To potřebuji prosím do zítra děkuji nashledanou. (Veronika Klicperová)

Odpověď: To, jak dlouho vydrží jídlo teplé, závisí mimo jiné na jeho tepelné kapacitě. Vysokou (měrnou) tepelnou kapacitu má z běžných látek především voda a tak je vlastně celkem logické, že pokrmy s vysokým obsahem vody (polévka, dušená cibule, jablečná náplň, ...) pomaleji chladnou.

(Jakub Jermář)   >>>  

247) Gravitace ve vakuu20. 12. 2007

Dotaz: Dobry den. Co je vakuum? A ako je to s gravitaciou a vakuom. Posobi gravitacia Zeme na predmet ulozeny v nadobe s vakuom? Podla mna gravitacia pôsobi , pr. vesmir. Ako je to , lebo sa s kamosom nevieme dohodnut. On hovori opak. Kde je pravda? (Out there?) Dakujem velmi pekne (karol)

Odpověď: Vakuum je latinsky prázdnota. Obvykle tak označujeme prostor s extrémně malým množstvím (či spíše hustotou) částic.

Gravitace působí ve všech prostředích (tedy i ve vakuu) a nelze ji ani žádným prostředím nijak odstínit. Moderní fyzika popisuje gravitaci jako deformaci časoprostoru - takže vůbec nevadí, když v tom časoprostoru na konkrétním místě nic není (neboli je tam vakuum, prázdnota). Prostor může být zdeformován (vlivem třeba docela zdálených hmotných objektů) i na místech, kde je v tomto smyslu prázdný.

(Jakub Jermář)   >>>  

248) Využitelnost solární energie20. 12. 2007

Dotaz: Dobrý den, chtěla bych se zepatat, jaká část energie vyzářená Sluncem je pohlcována povrchem Země? Dovedeme celou tuto část technicky využít? Děkuji (Chelsie)

Odpověď: Na povrch Země směřuje méně než jedna miliardtina (1/1000000000) slunečního záření, zbytek je Sluncem vyzářen do ostatních směrů prostoru. Z dopadajícího záření (tedy z oné miliardtiny) je ale nezanedbatelná část (desítky procent) rovnou odražena pryč do vesmíru mraky a povrchem Země, teprve zbytek se nějakým způsobem využije k ohřátí (resp. udržení relativně stabilní teploty) Země.

I z toho, co zbyde (z oné miliardtiny zmenšené o odrazy do vesmíru) však člověk nedokáže v současnosti technicky využit více než několik tisícin procenta.

(Jakub Jermář)   >>>