FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 16 dotazů obsahujících »kinetické«

6) Zachovává se energie nebo hybnost?13. 12. 2005

Dotaz: Ve škole (sexta) jsem dostal spočítat tento příklad: Kulka o hmotnosti m1=10g narazí do krabice o hmotnosti m2=990g, a uvázne v ní. Jaká je rychlost v2 objektu s kulkou? Vyšel jsem ze zákona zachování hybnosti a vyšlo mi, že v2=v1*m1/(m1+m2). Když jsem ale vyšel ze zákona o zachování energie a udělal úvahu, že kinetická energie kulky před nárazem musí být stejná jako kinetická energie soustavy krabice+kulka po nárazu, dostal jsem, že v2=SQRT(m1/(m1+m2))*v1. Proč je moje úvaha o zachování kinetické energie chybná? (Zdeněk)

Odpověď: Zkusme se zamyslet nad tím, co se stane, když se kulka zachytává v krabici: Část její kinetické energie se samozřejmě přemění na kinetickou energii celé soustavy, zároveň však nemalá část původní kinetické energie je spotřebována na deformaci a zahřátí krabice v místě, kudy kulka prolétne a kde uvízne. Pokud bychom tuto "ztracenou" energii dokázali vyčíslit, můžeme výslednou rychlost ze zákona zachování energie spočítat a došli bychom ke správnému výsledku. Počítání pomocí zákona zachování hybnosti je však výrazně jednodušší.
(Jakub Jermář)   >>>  

7) Perpetuum mobile?28. 03. 2004

Dotaz: Pokud ponoříme kapiláru do vody začne kapalina vzlínat. Pokud by voda, která by vytekla z kapiláry dopadla např. na vodní mlýnek, a kapilár bylo mnoho, otáčel by se mlýnek díky kinetické energii na něj dopadající vody, voda je vytlačována do kapilár tlakem vzduchu. Tudíž jsme do soustavy žádnou energii nedodali, nebo je to jinak? (Jirka)

Odpověď: K Vámi popisovanému efektu nikdy nedojde, kapalina nezačne z kapiláry přetékat, natož ze zahnuté trubičky odkapávat. Kapilární elevace či deprese je způsobena tlakem pod zakřiveným povrchem kapaliny. Výsledná síla působí do kapaliny resp. ven podle toho, zda je povrch vypuklý resp. vydutý. Charakteristika zakřivení je určena jevy u stěny kapiláry (tím, zda kapalina stěnu smáčí či nesmáčí - vzájemně na sebe působí molekuly vody a materiálu kapiláry). Pokud tedy nebude žádné rozhraní kapalina-stěna, nebude ani žádná síla, která by sloupec tahala nahoru a ustanoví se rovnováha mezi stupněm zakřivení povrchu a výškou kapiláry; povrchové napětí bude naopak vodě bránit vytékat.
Nejlepší způsob ověření ovšem je nesedět u klávesnice a pohrát si s kapilárami. Co třeba rtuť? Ta sklo nesmáčí, tak co kdyby nám mohl naopak probublávat vzduch do kapaliny? :-)
Literatura: Bakule R. - Svoboda E. , Molekulová fyzika, Academia, Praha 1992
(Mgr. Jiří Kvita)   >>>  

8) Tvar gravitačního pole pohybujícího se tělesa10. 03. 2004

Dotaz: V Odpovědně již zazněl dotaz, zda se projeví kinetická energie pohybujícího se tělesa na zvýšení jeho hmotnosti a s ní i gravitační síly tělesa. Změní přidaná (kinetická) hmotnost tvar gravitačního pole tělesa v pohybu? Nemám teď na mysli relativistickou deformaci tělesa a jeho gravipole z pohledu vnějšího pozorovatele, ale případnou deformaci tvaru gravipole objektivně změřenou na různých místech povrchu tělesa místním pozorovatelem pohybujícím se spolu s tělesem. Předpokládejme, že toto těleso mělo v klidu ideální kulový tvar a tedy také ideálně sférické rozložení intenzity gravipole. Otázka tedy zní: Zůstane gravitační pole pohybujícího se (v klidu ideálně sférického) tělesa pro místního pozorovatele ideálně sférické? (Josef Korba)

Odpověď: Na Vaši přímou otázku, zda "Gravitační pole pohybujícího se (v klidu ideálně sférického) tělesa zůstane pro místního pozorovatele ideálně sférické?", lze v zásadě odpovědět "Ano". Nicméně toto "ano" platí jen za jistých předpokladů o tom, jakého charakteru je pohyb tělesa a kdo přesně je zmíněný "místní pozorovatel". Může se například stát, že kinetická energie dodaná tělesu přejde nikoli (jen) do translační, ale do ROTAČNÍ kinetické energie. Gravitační pole rotujícího tělesa už nebude sféricky symetrické, pokud nebude pozorovatel provádět svá měření v soustavě "spolurotující" s objektem.
(Doc. RNDr. Jiří Podolský, CSc.)   >>>  

9) Maximální možná teplota21. 01. 2004

Dotaz: Dobrý den! Moc by mě zajímala následující otázka, tedy spíše odpověď na ni. Termodynamická teplota je definována jako rychlost pohybu částic, absolutní nula je když pohyb částic ustane. Lze si však alespoň teoreticky představit maximální teplotu, tedy situaci kdy se i nejtěžsí částice (neutrony?) pohybují rychlostí světla a další zrychlování (ohřev) není možné? (Petr Lánský)

Odpověď: Ano i ne. Ale trošku to upřesníme. Termodynamickou teplotu lze (také) definovat jako střední hodnotu kinetické energie částic. Ta ale roste teoreticky neomezeně, protože i když rychlost částice má svůj strop, kinetická energie pro vysoké rychlosti není 1/2 mv2, ale
celková energie - klidová energie, tedy mc2 - m0 c2, kde m = m0 (1-beta)(-1/2)
(Zkuste si to rozvinout binomickou větou, a první člen je právě klasický výraz 1/2 mv2.)
Pak ovšem roste teoreticky neomezeně i možná teplota. Samozřejmě se teď nestaráme o to, jak bychom něco na extrémní teplotu zahřáli nebo souvislostmi s "celkovou energií vesmíru" apod. Ale abych Vás potěšil: pojem teploty lze zavést i pro jiné systémy, kde energie má svou největší i nejmenší mez: třeba magnetické systémy - stojící částice s magnetickým momentem ve vnějším magnetickém poli. Nejmenší energie je tehdy, když všechny částice stojí ve směru pole, největší tehdy, když všechny jsou proti směru pole. Teplotu (tedy veličinu, kterou musí mít dva systémy stejnou, aby byly navzájem v rovnováze) můžeme definovat přes souvislost pravděpodobnosti celého systému (entropie) s energií. Ukazuje se pak, že při nejmenší energii je teplota nulová. Stavu, kdy je průměrně stejně počet částic po i proti směru pole, přísluší nekonečná teplota. (A už ji máte!). Stavy, kde jsou částice převážně orientovány proti poli, odpovídají záporné teplotě - která je tedy vyšščí, než libovolná kladná. Nejvyšší teplota vůbec pak odpovídá maximální energii, a je to "záporná nula". Pořadí teplot tedy je 0, 1, 2,...,10 ..., 1000, ..., nekonečno, ... -1000, ... -10, ... -0 Toto má uplatnění při studiu systémů spinů.
(J. Obdržálek)   >>>  

10) Rovnoměrně zpomalený pohyb06. 11. 2003

Dotaz: Setkal jsem se s tímto příkladem: Od auta jedoucího určitou rychlostí se oddělí jedno z jeho kol. Otázka zní jak daleko kolo dojede, pokud proti němu působí konstantní síla. Bude se do dráhy započítávat i moment setrvačnosti kola? (Ondřej Kudláček)

Odpověď: Co se má zanedbávat a co započítávat, je otázka pro autora úlohy. Samotný předpoklad konstantní brzdící síly je velmi divoký, protože největší roli hraje odpor vzduchu a ten se mění s druhou mocninou rychlosti, brzdící síla se tedy při kutálení kola významně zmenšuje.
Pokud budeme počítat s konstantní brzdící silou, stačí vyjít z toho, že změna kinetické translační a rotační energie kola z počáteční hodnoty na nulu {1/2 m*v2+1/2J*(v/R)2} se rovná absolutní hodnotě práce brzdící síly {F*s}. Z této rovnice vydělením F získáte s.
J je moment setrvačnosti kola, R jeho poloměr měřený až k povrchu, v rychlost při oddělení kola od auta, F brzdící síla, s dojezd, m hmotnost kola.
(M. Rojko)   >>>