Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 1493 dotazů
597) Radioaktivita a filmování
04. 05. 2006
Dotaz: Při prohlížení záběrů většinou amatérských malostopážních barevných filmů
pořízených náhodně v roce 1986 krátce (snad 1 - 3 dny) po zamoření radiací
městečka Pripjať ležící v bezprostřední blízkosti atomové elektrátrny Černobyl
na Ukrajině jsme si s kolegou všimli krátkých, avšak zřetelných azáblesků
vyskytujících se náhodně na celé ploše záběru při běžícím filmu. Kolega tvrdí,
že záblesky nesouvisejí s radiací a že může jít o nekvalitní film. V době
pořízení těchto amatérských filmů se zcela jistě používal klasický materiál pro
barevný film a proto jsem přesvědčen, že daný jev souvicí s vysokou mírou
radiace, avšak nejsem schopen jev fyzikálně dostatečně vysvětlit. U černo-bílého
filmového materiálu tvořeného z krystalků stříbrných solí mě vysvětlení záblesků
vzniknuvších zřejmě v době exposice v důsledku velmi vysoké radiace ve snímaném
prostředí napadá, ale u barevného filmu nevím. Může uvedený jev skutečně
souviset s radiací? (Jakub Sedláček)
Odpověď: Popisované projevy dle mého názoru svědčí spíše o špatné kvalitě filmu. Zvýšená radiace by se neprojevovala záblesky přes celá jednotlivá políčka, ale spíše zrněním (tedy jakoby záblesky jednotlivých bodů) či vybledlostí celého filmu.
Dotaz: Měl bych dotaz k Torriceliho pokusu, stručně a jednoduše, s kamarády se totiž
nemůžeme dohodnout jestli je možné, aby v trubici vzniko vzduchoprázdno. Díky
moc za odpověď (Pavel)
Odpověď: Přesně vzato, v trubici úplné vakuum nevznikne - rtuť se nepatrně odpaří, tak aby nad její hladinou vznikla její sytá pára. Přesto je zde tlak dostatečně nízký na to, abychom mohli rtuťové páry zanedbat a považovat je za vakuum.
Dotaz: Dobrý den, studuji chemii, absolvoval jsem laboratoře z biologie a napadlo mě
(při mikroskopování) jak dalece lze zajít při "zvětšování" objektů? Je mi jasné,
že světelný mikroskop zvětšuje méně než mikroskop elektronový, ale co vše lze
zatím pozorovat? Opravte mne jestli se mýlím, ale mám za to, že DNA vlákno lze
pozorovat elekt. mikroskopem. Moje otázka zní - je to konec, nebo budeme v
budoucnu schopni pozorovat menší částice? Co atomy uvidíme je někdy? Jsme
omezeni naši technologií, nebo nám zákony fyziky určily hranici, za kterou nelze
zajít? Možná vám můj dotaz přijde nesmyslný, ale již dlouho nad ním přemýšlím...
Předem děkuji za odpověď. (J. Neuschwaiz)
Odpověď: Pokud se chceme podívat na nějaký objekt, musíme si na něj posvítit a zachytit odražené světlo (případně prošlé, tedy nepohlcené světlo). Akazuje se ale, že musíme použít světlo vlnové délky kratší, než je rozměr tělesa (resp. jeho detailu), který chceme pozorovat. Při použití viditelného světla (okolo 500·10-9 m) proto můžeme pozorovat předměty o rozměrech mikrometrů a větší.
Chceme-li prozkoumat nějaké objekt detailněji, potřebujeme si na objekt svítit něčím s kratšími vlnovými délkami. Obvykle se k tomu užívají elektrony, které, jsou-li dostatečně urychleny, vykazují některé vlnové vlastnosti (a v mnohém se tak chovají jako světlo). Mikroskopům se pak říká elektronové mikroskopy a jsou schopny zvětšovat až 1 000 000 krát.
Ještě o něco lépe pak dokážeme prozkoumávat povrchy některých materiálů pomocí tzv. rastrovacího tunelovacího mikroskopu, který přejíždí těsně nad povrchem materálu s velice tenkým hrotem a měří velikost elektrického proudu, jemuž se podaří mezi vzorkem a hrotem "přeskočit" (přesněji vzato protunelovat potenciálovou bariérou). Pomocí tohoto mikroskopu se dokážeme "podívat" (po zpracování údajů počítačem a vytvoření obrazu na monitoru) i na jednotlivé atomy.
Dotaz: Zdravím, chci se Vás zeptat, jestli byste mi mohli poradit z jakého důvodu
vlákno obyčejné žárovky s wolframovým vláknem praskne nejčastěji při zapnutí
přívodu elektřiny...dík (Hanz)
Odpověď: Před zapnutím má vlákno žárovky běžnou pokojovou teplotu (tedy okolo 20°C). Po sepnutí spínače jím začne procházet elektrický proud a vlákno se zahřívá na 2100 až 3000°C. Zahřátí o několik tisíc stupňů přitom proběhne za méně než sekundu, což v důsledku tepelné roztažnosti nutně vyvolává ve vlákně určité pnutí. Při a krátce po zahřátí se z povrchu vlákna odpařuje část jeho materálu, dokud nedojde nad vláknem ke vzniku sytých par. Přitom se více odpařuje tam, kde je vlákno více zahřáto a vlákno je více zahřáto procházejícím proudem tam, kde je nejtenčí. Po vypnutí proudu odpařený materál na vlákně opět kondenzuje (resp. desublimuje), ovšem tentorát zase více tam, kde je vlákno chladnější, tedy tam kde je tlustší (a bylo tedy méně zahříváno procházejícím proudem). Krom toho část materálu zkondenzuje na skleněné baňce žárovky. Po dostatečném počtu zapnutí proto dojde k tomu, že se nějaké místo na vlákně ztenčí tak moc, že se průchod proudu přetaví.
Doplňeno: Jak správně poznamenal jeden náš čtenář, při vypnutí žárovky dochází při chladnutí vlákna ke změnám v krystalické struktuře wolframu a vlákno se postupně stává křehčí a náchylnější k mechanickému poškození. Navíc vlákno je zejména v okamžiku zapnutí (než se zahřeje, prochází jím značný proud) namáháno magnetickou silou způsobenou procházejícím proudem.
Dotaz: Jaký optický jev způsobuje světelnou stopu, například při kroužení(jakémkoli
rychlém pohybu) rozžhaveným klacíkem ve tmě? (linda)
Odpověď: Obrazce vznikající při rychlém pohybu světelného zdroje nejsou způsobeny žádným fyzikálním optickým jevem, ale jsou důsledkem nedokonalosti snímače, nejčastěji tedy oka. Pro názornost se ale podívejme nejprve na fotoaparát - ten při pořizování snímku na chvilku odkryje fotocitlivou vrstvu (film u klasických či snímací senzor u digitálních fotoaparátů) a když už je "nachytáno" dostatek světla, fotoaparát zase fotocitlivou vrstvu zakryje. Pokud se tedy fotografovaný předmět pohybuje, bude na výsledné fotografii zachycena jeho pozice od okamžiku odkrytí fotocitlivé vrstvy až do okamžiku jejího zakrytí - bude tedy rozmazaný. Při fotografování kroužícího žhnoucího klacíku tedy bude zachycena část jeho trajektorie.
V případě oka se nedá mluvit o zakrývání či odkrývání sítnice, protože pokud zrovna nemrkáme, je oko otevřené stále. Přesto zde dochází k podobnému jevu. Jednotlivé fotocitlivé buňky (tyčinky pro černobílé a čípky pro barevné vidění) totiž potřebují ke své aktivaci (oby odeslaly signál, že na ně dopadá světlo) určitý čas (a musí "nasbírat" dost světla), dá se tedy řict, že průměrují množství dopadajícího světla za určité krátké časové období. Při dobrém osvětlení je tento čas relativně krátký (několik setin sekundy), při horším ovětlení se doba prodlužuje (v šeru používáme už jenom tyčinky a ty jsou v tomto ohledu pomalejší). Celý obraz pak navíc ještě doupraví a zpracuje mozek tak, aby mu dával smysl.