FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 8 dotazů obsahujících »chladnutí«

7) Pohyb pólů24. 07. 2002

Dotaz: Dokáže súčasná veda vysvetliť ako vzniká posuv pólov, precesný pohyb a prepólovanie? (jaroslav)

Odpověď: To je několik otázek dohromady, ale s každou z nich si dovedeme celkem uspokojivě poradit, až na jistý drobeček, který zmíním nakonec.
1) Posuvem pólů zřejmě myslíte posuv magnetických pólů vůči zemské ose (= ose, kolem Země rotuje). Tady je hlavní problém, že nevíme jednoznačně, jakým mechanismem vzniká magnetické pole Země. 1a) Má se zato, že hlavní přínos mají proudící žhavé (tekuté a vodivé) části uvnitř Země. V magnetohydrodynamice se odvozují okolnosti, za kterých se počáteční magnetické pole ve vodivé kapalině "strhává" s ní, jako by v ní zamrzlo. Ovšem o tom, jak a proč v hloubce pod námi proudí ty žhavé masy, je nesnadné něco přímo zjistit. 1b) Ví se, že sice je jádro Země železné (a niklové), ale že toto není příčinou zemského magnetismu. Železo je totiž v jádře při teplotách mnohem vyšších než Curieova teplota, čili nemůže být feromagnetické. 1c) Svůj podíl na magnetickém poli Země mají i v podstatě stálé elektrické toky v ovzduší způsobované bouřkami.
Na druhou stranu dovedeme velice přesně sledovat magnetické pole Země v její minulosti zkoumáním vyvřelých hornin, ve kterých "zatuhlo" pole během chladnutí přes Curieovu teplotu. Víme tedy o tom, že se Země v historii přemagnetovává, a to celkem hbitě - v průměru za 1 milion let (tj. někdy za 100 000, někdy za 10 000 000). To ovšem neznamená, že by magnetické pole přitom vymizelo, ani že by např. severní pól (v našem pojetí) putoval z jednoho zeměpisného pólu po poledníku přes rovník na druhý zeměpisný pól. On totiž sice vymizí (přechodně) dipólový magnetický moment, ale vyšší (kvadrupólové, oktupólové) mohou zůstat, a to i dosti veliké. Navenek se to jeví tedy tak, jako by na Zemi bylo víc severních (i jižních) pólů na různých místech. Zemskému magnetismu se věnují samostatné publikace, ale je dost hezky diskutována i ilustrována v učebnici FYZIKA (Halliday, Resenick, Walker; vydal Prometheus 2001) v kap. 29.2 (str. 747) a zejména 32.3 - Zemský magnetismus (str. 835-6)
2) Precesní pohyb nesouvisí s magnetismem, ale s tím, že Země je setrvačník, který se pohybuje v gravitačním poli Slunce. Toto lze spočítat velice přesně na hodně dlouhá období.
3) O "přepólování" jsem se zmínil už výše.
A ten bonbónek - ani povrch Země není tuhé těleso, ale tak trochu stydnoucí hustá kaše, která se svraskává (takhle vznikaly Alpy anebo tak se rozpadal původní prakontinent - Pangeia - a jeho části se později naopak vklíňovaly do sebe). Na tomhle pohybujícím se a měnícím se povrchu žijeme a popisujeme tyto změny - vůči čemu? no právě vůči tomu měnícímu se povrchu samotnému. Takže můžeme popsat, jak se dva kontinenty od sebe vzdalují (teď už to umíme i přesně měřit lasery), ale není vlastně vůbec tak jednoduché popsat současně všecko.
(J.Obdržálek)   >>>  

8) Rozložení teploty atmosféry19. 06. 2002

Dotaz: Poraďte mi, prosím, jak vysvětlit žákům osmé třídy skutečnost, že ve vyšších vrstvách atmosféry je teplota pod bodem mrazu, přestože teplý vzduch stoupá vzhůru. A je-li to pro děti alespoň trohu pochopitelné, poraďte, jak vysvětlit rozložení teploty atmosféry v závislosti na výšce. (Tomáš Špaček)

Odpověď: Milý kolego, doporučoval bych žákům připomenout, že v atmosféře se směrem vzhůru zmenšuje tlak a hustota, díky tomu balón naplněný vodíkem nebo héliem, které mají při stejné teplotě menší hustotu než vzduch, může stoupat. Místo hélia nebo vodíku ale stačí balón naplnit teplým vzduchem, který má také menší hustotu než okolní studenější vzduch a balón opět může vzlétnout. Jestliže však tenhle teplý vzduch (v balónu nebo bez něj) stoupá do oblasti nižšího tlaku, pak se rozpíná, tím pracuje a pokud mu nepřivádíme teplo (např. tím, že bychom vzduch v balónu ohřívali hořáky, jak se to normálně dělá), chladne (pracuje na úkor své vnitřní energie). Tak sice teplý vzduch stoupá vzhůru, ale přitom chladne. Nejnižší vrstva atmosféry se ohřívá především od zemského povrchu ohřívaného slunečním zářením, je většinou promíchávána, taky v ní koluje vlhkost, co dělá mraky a prší. Proto je skutečná závislot teploty na výšce trochu složitější, než by odpovídalo zmíněnému chladnutí bubliny vzduchu při výstupu. Podívejte se se žáky na aktuální data na stránce http://www.chmi.cz/meteo/oap/graf_ptu.html
Další zajímavé jevy nastanou ve stratosféře (nad tropopausou, která je na dnešním výstupu asi ve 13,5 km a kde je teplota minimální) - tam je podstatná absorbce krátkovlnného záření (UV) ozónem, což nakonec způsobí ohřev, takže teplota do výšky kolem 50 km zase roste. Výše už teplota opět klesá, atmosféra je ale už tak řídká, že teplota spíš říká, jaká je střední rychlost molekul vzduchu než jakou teplotu bychom cítili, kdybychom tam na chvíli vylezli z rakety...
Graf závislosti teploty na výšce
(J.Dolejší)   >>>