Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 1493 dotazů
783) Práškové kakao na hladině vody
17. 03. 2004
Dotaz: Dobrý den, je to možná divný dotaz, ale chtěl jsem se zeptat, proč, když si sypu
čokoládu (kafe,...) do vody, tak se po hladině začne roztahovat. Souvisí to
pouze s povrchovým napětím vody, nebo je to tak něco, jako když si rozsypu po
stole sůl? Díky (Štěpán Kříž)
Odpověď: Je to samozřejmě obojí. Na začátku je to na hladině opravdu jakási "kupička",
jako ta sůl na stole. Snadno nahlédnete, že tíha vrchních vrstev vede zrníčka ve
spodních vrstvách k tomu, aby se od sebe vzdalovala. Proti tomu by (u soli)
působilo to, že se zrnka soli vodou smáčejí, a protože mají vyšší hustotu než
voda, klesají rovnou ke dnu (a už cestou se rozpouštějí, pochopitelně).
"Kupička na hladině" se tedy neudrží natolik, abychom o ní mohli mluvit. Ovšem
čokoláda i mletá káva jsou trochu tučné a nesmáčejí se tak snadno (zvláště
chladnější vodou), takže na vodní hladině zůstanou déle, a "kupička" je na
světě. Dále ovšem obojí obsahují aromatické látky (jinam bychom čokoládu ani
kafe nepili, že?), které těkají, pohlcují se vodou a mění tím její povrchové
napětí. Tím mění ovšem i sílu působící na zrnko, které je zdrojem těchto par.
Takhle například probíhá rejdění zrnka kafru po vodní hladině. Předpokládám, že
tento jev je také odpovědný za roztahování, na které se ptáte.
784) Magnetická síla a vztažná soustava pozorovatele
17. 03. 2004
Dotaz: Dva vodiče, jimiž prochází stejně orientovaný el. proud, se přitahují a magnetická síla přitahování je úměrná procházejícímu proudu, tedy trochu nepřesně "rychlosti" nosilelů náboje... Mám dvě otázky: 1.Co se stane v
případě, že spojím svou pozorovací soustavu s náboji? Zmizí síla, zmizí
magnetismus? 2.Analogicky, spojím svou pozorovací soustavu s urychlujícími se náboji, které vyzařují fotony. Budou pak fotony nebo bude "tma", resp. bude pro někoho "tma", pro někoho "světlo"? Je tedy existence fotonu určená soustavou
pozorovatele? (PK)
Odpověď: Odpovím na něco jiného a z hlediska odpovědi jednoduššího: věřím že vám to
pomůže pochopit problém lépe. (Pokud ne, tak se klidně zeptejte znova,
podrobněji.) Přenesu-li se mezi dvěma inerciálními vztažnými systémy, když v
jednom bylo jen elektrické pole, pak ve druhém bude vedle (trošku změněného)
elektrického pole také pole magnetické. (Přenos musím popsat relativistickou
Lorentzovou transformací, nikoli klasickou Galileovou.) Proto se také mluví vždy
o elektromagnetickém poli, majícím v daném vztažném systému složku
elektrickou a složku magnetickou. Stejně jako x-ová a y-ová složka vektoru bude
jiná ve vztažných systémech, které jsou vůči sobě natočené, a ve vhodném systému
může jedna z nich vymizet, tak také budou jiné elektrické a magnetické složky
téhož elektromagnetického pole, pozorujeme-li je z navzájem se pohybujících
vztažných systémů. Mám-li tedy např. dva elektrické náboje vůči sobě v klidu a
popisuji-li je ve vztažné soustavě, která je vůči nim v klidu, pak snadno určím
jejich vzájemnou sílu z Coulombova zákona, a nic jiného nepotřebuji. Pozoruji-li
však totéž ze systému, který se kolmo vůči nábojům pohybuje, pak vidím dva
letící náboje (letící rovnoběžně a stejně rychle, pochopitelně), které na sebe
nejenom působí elektrostaticky (jejich náboje q jsou invarianty a nemění se s
pohybem, rovněž jejich vzdálenost zůstává stejná. Navíc je tu ale magnetické
působení: pohybující se náboj je jakoby "element" elektrického proudu,
vyvolává tedy magnetické pole. A obráceně, druhý náboj se proto tako pohybuje v
magnetickém poli (prvního náboje).
Co se týče druhého dotazu, uvažujte raději o elektromagnetické vlně (světlu) než o fotonech; jimi byste tam vnášel kvantování, a to pro naše účely není podstatné. Letíte-li i statickým elektrickým polem se zrychlením, pak pozorujete záření. Problematika je složitá sama o sobě mj. tím, jakou část energie vlastně připíšu záření. (Názorně řečeno, dva obrazy záření, kde ve druhém navíc proudí energie v uzavřených kruzích, jsou nerozlišitelé.) Partie klasické elektrodynamiky popisující záření nejsou jednoduché (hesla: retardované potenciálny, Liénardovy - Wiechertovy potenciály, Hertzův dipól). Najdete je v klasické literatuře, úvod je např. v Sedlák, Štoll:
Elektřina a magnetismus (Karolinum, Praha 1993). Podrobně vysvětleny a
propočítány budou na mé webové stránce koncem dubna v Klasické elektrodynamice.
Dotaz: Zajímalo by mě, jaké jsou biologické účinky mikrovln. (Kristýna Tajovská)
Odpověď: Záleží samozřejmě na vlnové délce (resp. na frekvenci) mikrovlnného záření, kam se "strefí" s rezonancí. Pokud je to oblíbená frekvence mikrovlnné trouby 2,45 GHz, pak rezonuje s vibrací molekul vody, které se proto trhají ze svých "nadmolekul" a při opětovaném navázání se dodaná energie projeví jako jejich zahřátí. Proto také mikrovlna zahřívá specificky vodu a skrze ni vše, co vodu obsahuje. Lze si vymyslet zařízení, které by specificky ohřívalo jiné molekuly, pokud by ovšem vytvářely podobné nadmolekuly. Nevím ale, že by se to někde prakticky užívalo.
Dotaz: Na el. vysavači nejmenované značky je nápis 1400W a 750W spolu s grafickým
značením, které přisuzuje větší výkon sání a menší výkon motoru - sací síla
1400W. O čem tato informace vůbec vypovídá? Co znamená pojem sací síla vyjádřená
jednotkou Watt a jak si vysvětlovat její hodnotu převyšující hodnotu výkonu
motoru? Třešničkou na dortu je hodnota příkon motoru 750W, uvedená v technické
dokumentaci. (Standa)
Odpověď: Sdílím vaše rozpaky. Věřil bych tomu 750W, kterému rozumím (vy samozřejmě taky).
U vysavače bych nejraději viděl jednak, jaký podtlak (v Pa) dokáže vyvinout s
uzavřeným vstupem vzduchu (jakási analogie napětí naprázdno) a jakou vyvine
průtokovou rychlost (v m3/s) při plně otevřeném vstupu vzduchu (jakoby proud do zkratu).
1.) Diracova rovnice popisuje chování relativistické bodové částice se spinem 1/2 (elektronu, mionu...). Jde o diferenciální rovnici pro čtyřkomponentovou vlnovou funkci (tj. jde vlastně o čtyři svázané rovnice). Rovnici je možné upravit do tvaru, kdy všechno vytkneme před hledanou funkci, a to, co stojí před ní, se nazývá Diracův operátor:
, kde
Jedná se tedy o velmi formální objekt, důležité však je, že rovnice (a tedy i tvar Diracova operátoru) určuje fyzikální chování volné částice, lze s ní i (v upravené formě) lépe popsat spektrum atomu vodíku (i když souhlasu s experimentem dosáhneme až s kvantovou teorií pole:), rovnice určuje možné stavy zkoumaného systému. Pro zajímavost můžeme uvést jeden z možných tvarů Diracových matic:
Pro hlubší pochopení je třeba přečíst si příslušnou kapitolu z relativistické kvantové mechaniky.