FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 1493 dotazů

805) Jak funguje termoska?23. 02. 2004

Dotaz: Chtěla bych se zeptat, proč vydrží zmrzlina v termosce studená a čaj teplý? (petra)

Odpověď: Termoska je nádoba s dvojitými skleněnými stěnami, mezi kterými je vyčerpán vzduch a stěny jsou zevnitř stříbrně pokoveny. Teplo se tedy přes stěny špatně šíří, tepelnému záření brání kovový povlak, který ho odráží, vedení a proudění je potlačeno tím, že mezi stěnami je skoro vakuum. Teplo z čaje proto nemůže snadno unikat ven do chladnějšího prostředí a obráceně teplo z venku se špatně dostává dovnitř ke studenější zmrzlině.
(M. Rojko)   >>>  

806) Je plamen formou plazmatu?07. 02. 2004

Dotaz: 1. Chtěl bych se zeptat jestli je plamen formou plazmatu (jestli se zde vyskytují ionty), jestli je to otázka teploty nebo elektromagnetického pole.
2. Četl jsem něco o iontovém motoru, kde se ionty urychlují elektromagnetickým polem a zajímalo by mne, jestli to samé lze udělat i se spalinami chemického motoru - zvýšení rychlosti výtokových plynů a výkonnosti pohonu rakety. Rychlost iontů je asi 10x vyšší než u chemického paliva, ale nemá takovou akceleraci a nelze použít v atmosféře, a já nevím proč. (Petr Zimmermann)

Odpověď: 1. Ionty se, např. vlivem kosmického záření, běžně vyskytují i ve vzduchu za pokojové teploty. Pouhý výskyt iontů tedy není dobrým kritériem pro to, aby bylo rozumné nějaké prostředí nazvat plazmatem. Plamen sice obsahuje velké množství iontů (1014 - 1018 v krychlovém metru), ale formou plazmatu bych jej též, z důvodů, jež se pokusím níže vysvětlit, nenazval.
Plazma je obyčejně definováno jako navenek neutrální plyn obsahující velké množství kladně i záporně nabitých částic, které se vzájemně ovlivňují elektromagnetickými silami. Přesněji řečeno, lze definovat tři podmínky pro plazma:
A. Rozměr plazmatu musí být mnohem větší, než je Debyeova délka, neboli vzdálenost, na které nabité částice elektrostaticky odstíní náboje do plazmatu vložené. Tato vzdálenost je přímo úměrná tepelné rychlosti částic a nepřímo úměrná odmocnině z jejich hustoty.
B. Hustota nabitých částic musí být taková, aby v krychli o hraně rovné Debyeově délce byl statisticky významný počet částic, to jest mnohem více, než jednotky.
C. Pokud plyn obsahuje i neutrální částice, srážky mezi nimi a nabitými částicemi musí být méně časté než je perioda oscilací působených vzájemným působením elektromagnetických sil mezi nabitými částicemi. V opačném případě by se totiž nabité částice vzájemně neovlivňovaly elektromagnetickými silami, ale pohybovaly pod vlivem srážek s neutrálním plynem. Za onu periodu oscilací zde lze uvažovat periodu elektrostatických plazmových kmitů, jež je nepřímo úměrná odmocnině z hustoty nabitých částic. Na hustotě nabitých a neutrálních částic a na jejich tepelných rychlostech též závisí frekvence jejich vzájemných srážek.

Pro odpověď na otázku, je-li plamen formou plazmatu je tedy důležitá nejen teplota ale i hustota nabitých a neutrálních částic. O teplotě plamene přirozeně hořících materiálů mají dobrý přehled hasiči. Následující tabulka je převzata z [1].
rašelina, mazut: 1 000 °C
dřevo, hnědé uhlí, ropa, petrolej, motorová nafta: 1 100 °C
černé uhlí, kaučuk a jeho výrobky, benzín: 1 200 °C
antracit, síra: 1 300 °C
hořlavé plyny: 1 300 - 1 500 °C
hořčík, elektron: 2 000 °C
Jak uvádí pplk. Mráz [2], hořící plastová ramínka z tvrzeného polystyrenu mají teplotu plamene až 2210 °C.
Co se týče uměle pěstovaného plamene, běžné propan-butanové hořáky dosahují teploty plamene 800-1600 °C. Zemní plyn spalovaný na vzduchu dosahuje teploty asi 2000 °C a v čistém kyslíku asi 2700 °C. Acetyléno-kyslíkový hořák vyvine teplotu 2700-3200 °C a tryska hlavního motoru raketoplánu, napájená kapalným kyslíkem a kapalným vodíkem dosáhne teploty plamene asi 3300 °C [3].
Převážná většina nabitých částic vzniká při chemických reakcích spojených s hořením, nikoli tedy přímou tepelnou ionizací. Hustota a druh vzniklých nabitých částic tak velmi závisí na druhu paliva. Při hoření dochází ke vzniku kladných iontů (například CHO+, CH3+, C2H3O+, H3O+), záporných iontů (např. O2-) a elektronů, ale občas též až mikrometrových grafitových částic s kladnými náboji řádu 1000 elementárních nábojů [4,5]). Hustota vniklých nabitých částic je, podle druhu paliva, mezi 1014 m-3 (klasická tuhá paliva [5]) a 1018 m-3 (maximum pro plynná paliva v hořácích a tryskách [4,6]). To ale může být stále ještě zanedbatelná hodnota v porovnání s hustotou neutrálních částic, jež je za pokojové teploty a atmosférického tlaku asi 3*1025 m-3.
Z takto shromážděných údajů lze již ověřit, platí-li výše uvedené podmínky A-C pro to, abychom plamen mohli označit jako plazma. Zde zjistíme, že podmínkám A a B plamen většinou vyhoví (Debyeova délka je v řádech od 10-6 do 10-4 m), avšak podmínce C nikoli. Frekvence plazmových kmitů je zde mezi 100 MHz a 10 GHz, což je výrazně méně, než je frekvence srážek mezi elektrony a neutrálními částicemi, jež je v řádech tisíců GHz. Pohyb nabitých částic v plameni je tedy natolik ovlivňován srážkami s neutrálním plynem, že jejich vzájemné elektromagnetické působení je zanedbatelné, a plamen v tomto smyslu nelze nazvat plazmatem.
Doporučená literatura:
F.F. Chen: Úvod do fyziky plazmatu, Academia, Praha 1984.
Použitá literatura:
[1] Ing. Bohdan PTÁČEK, Základy požární taktiky: Parametry požáru, MV ŘEDITELSTVÍ HASIČSKÉHO ZÁCHRANNÉHO SBORU ČR ODBORNÁ PŘÍPRAVA JEDNOTEK PO^ÎÁRNÍ OCHRANY, Konspekt 1-1-04 (http://onsov.borec.cz/hasici/1_1_04.html)
[2] pplk. Milan MRÁZ, V Otovicích hasiči bojovali s velkým množstvím hoříciho plastu, 150 HOŘÍ číslo 9/2001 ( http://www.mvcr.cz/casopisy/150hori/2001/zari/mraz.html )
[3] http://www.space.com/businesstechnology/technology/new_shuttle_engine_010426.htm l
[4] A. Sorokin, Emission of ions and charged soot particles by aircraft engines, Atmos. Chem. Phys. 3, 325-334, 2003.
[5] D. J. Latham, Space charge generated by wind tunnel fires, Atmospheric Research 51, 267-278, 1999.
[6] R. M. Clements and P. R. Smy, Anomalous currents to a spherical electrostatic probe in a flame plasma, Brit. J. Appl. Phys. (J. Phys. D) Ser. 2, Vol. 2, 1731-1737, 1969.

2. Druhá část otázky je spíše technického rázu, odpovím jen stručně: Iontový motor může pracovat po dlouhou dobu, ale na druhou stranu pracuje s velmi malým tahem. Lze jej použít pro drobné korekce drah již vypuštěných družic, pro korekce orientace, a přichází doba jeho použití pro postupné urychlování těles. To povede k výrazným korekcím drah, avšak pouze při dlouhodobém chodu motoru umístěném na klasicky vypuštěných tělesech. Z běžného velmi malého poměru koncentrací iontů a neutrálních částic v plameni (viz výše) vyplývá, že klasický pohon raket je založen spíše na proudu neutrálních částic a dodatečné urychlování iontů by se v této situaci patrně nijak neprojevilo.
(RNDr. Ondřej Santolík, Dr.)   >>>  

807) Konstantní rychlost světla a současnost událostí02. 02. 2004

Dotaz: V učebnicích teorie relativity se často uvádí jako myšlenkový pokus dokazující dilataci času příklad, ve kterém se v jedoucím vlaku na malý okamžik rozsvítí baterka a paprsek vyslaný kolmo nahoru se odrazí od zrcátka zpět. Pro pozorovatele jedoucího ve vlaku paprsek vykoná cestu nahoru a dolů, avšak z pohledu pozorovatele stojícího mimo vlak paprsek vykoná pohyb šikmo nahoru a šikmo dolů. Ale totéž je možno udělat například s míčem při rychlosti třeba 60 km/h, ale o tak velké dilataci času, která by tak vyšla nejde hovořit. Čím je tedy světlo tak ''univerzální''? Protože kdyby mělo nekonečnou rychlost, byla by současnost absolutní. Také mě zarazilo tvrzení o relativnosti současnosti. Uvádí se příklad dvou od sebe vzdálených pozorovatelů. Jeden pozorovatel tomu druhému zamává, avšak druhý pozorovatel spatří toto zamávání o chvíli později. Podle mě se musí brát v úvahu, jak myslíme pojem ''současnost'', jestli jako to co vidíme nebo jako to, co se stalo. (Petr Choulík)

Odpověď: Klíčový rozdíl mezi míčem a světlem ve vašem příkladu je to, že světlo létá STEJNOU rychlostí v každé soustavě (to je ověřeno experimentálně a je základ speciální teorie relativity), zatímco míč ne. Na téma současnost: Uvažujte, co vidíte, změříte atd. z hlediska různých soustav. Tj. podstatné výroky znějí: "Pro pozorovatele v dané soustavě jsou/nejsou tyto dvě události současné (vidí/nevidí je jako současné)" Komplikace se současností nevznikají jen v případě současných soumístných událostí, to je vidět stejně z libovolné soustavy.
(J. Dolejší)   >>>  

808) Množství vzduchu proudícího z trubky02. 02. 2004

Dotaz: Zajímalo by mě, jaký je odběr vzduchu v l/s z trubky o vnitřním průměru 25,4 mm při tlaku 6 bar. v potrubí. Nebo jak lze spočítat výstupní rychlost proudění vzduchu při určitém tlaku a průřezu, abych si mohl spotřebu vypočítat.Děkuji (ZSILAY Pavel)

Odpověď: Myslím si, že množství vzduchu proudící z trubky bude dramaticky záviset na detailech vyústění, také tlak v trubce poté, co ji otevřete, asi poklesne a bude záviset na způsobu připojení atd. Proto spíše navrhuji ono množství, o které vám jde, změřit. Například tak, že změříte dobu, za jakou naplníte větší plastový pytel (jeho nafukování neklade vzduchu podstatný odpor), který pak zformujete do podoby válce, abyste snadno zjistil objem (například postavíte zavázaný pytel na zem, přiklopíte nějakou deskou a máte válec s krásně rovnými podstavami).
(J. Dolejší)   >>>  

809) Ochrana před dotykem fázového vodiče23. 01. 2004

Dotaz: Není mi zcela jasné, proč se v distribučních trafech (3x400V) uzel vinutí (nulák) musí spojit ze zemí (zakopaná Cu deska). Nebylo by bezpečnější, kdyby zem byla galvanicky oddělena od výstupu trafa? Předešlo by se úrazu proudem dotykem fázového vodiče. Nevím, zda je to z ekonomických důvodů nebo ochrana před bleskem... Nebylo by bezpečnější pro každou domácnost oddělovací trafo, kde by se žádná svorka sekundáru neuzemnila? (Jirka)

Odpověď: S tím „jednopólovým dotykem“ fázového vodiče (označme L1) by to byla pravda pouze do té doby, než by na jiném místě síte došlo (např. v důsledku poruchy) ke spojení některého z ostatních fázových vodičů (L2, L3) resp. středního vodiče (N) se zemí. Pak by se na tomto vodiči (L1) objevilo napětí vůči zemi až 400V resp. 230V. Tato porucha by navíc mohla přežívat při izolovaném uzlu vinutí velmi dlouho, protože nevznikne žádný zkratový proud (neuzavře se obvod), který by přerušil pojistku a tím odpojil vodič s poruchou od zdroje. (Někdy je to však žádoucí - např. v průmyslových sítích (IT), kde je potřeba nepřetržitý chod, i když dojde k poruše izolace na jedné fázi - není to však případ distribučních sítí.)
Spojení uzlu vinutí transformátoru se zemí principielně umožňuje činnost ochrany zemněním (sítě TT) resp. nulováním (sítě TN-S, TN-C) (dnes souhrnně ochrana samočinným odpojením od zdroje) neživých částí elektrických zařízení (např. kovová skříň ledničky, pračky, kostra žehličky...) před nebezpečným dotykovým napětím vůči zemi. Činnost této ochrany znázorňuje přiložený obrázek a následující text: V důsledku poruchy došlo ke spojení fázového vodiče s kostrou přístroje. Díky jejímu spojení přes ochranný vodič (PE) s uzlem vinutí transformátoru dojde okamžitě k přepálení pojistky a tím i k odpojení poškozeného přístroje od sítě. Spojení uzlu vinutí transformátoru (resp. také ochranného vodiče PE v rozvadeči) se zemí zajistí, že na vodivé kostře přístroje nevznikne větší dotykové napětí vůči zemi než je úbytek napětí na ochranném vodiči (PE) při zkratovém proudu. Velikost tohoto dotykového napětí a dobu odpojení spotřebiče pojistkou stanovují normy.

Co se týče toho transformátoru pro domácnost - platí totéž co bylo napsáno pro „velkou síť“. Oddělovací transformátor (1:1) se však používá např. při opravách el. přístrojů, kde by byla větší pravděpodobnost dotyku fázového vodiče. V tomto případě je však na sekundární vinutí transformátoru připojen pouze jeden přístroj.
Další a související informace (např. ochrana pomocí proudových a napěťových chráničů) je možno najít např. v knize Václav Honys: Nová příručka pro zkoušky elektrotechniků 1997-8 (nebo v některém jejím aktualizovaném vydání) nebo na serveru www.elektrika.cz.
(RNDr. Peter Žilavý, Ph.D.)   >>>