Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 1493 dotazů
837) Tvar duhy
04. 01. 2004
Dotaz: Chtěl bych se zeptat, proč se duha na oblohu promítá jako kružnice a jak je to
s její výškou nad horizontem během dne. Děkuji (Karel Zíval)
Odpověď: Na připojeném obrázku je kružnicí znázorněn řez kulovou kapkou obsahující její střed. Tímto středem prochází osa x položená do směru dopadajícího svazku rovnoběžných slunečních paprsků. Z tohoto svazku je zakreslen jeden paprsek, jenž na kapku dopadá s úhlem dopadu
α, lomí se dovnitř kapky (úhel lomu β) podstupuje jeden vnitřní odraz a posléze se lomí z kapky ven. Úhel, který svírá vystupující paprsek se směrem původně dopadajících paprsků, je označen δ. Jev duhy působí ty paprsky, které splňují podmínku minimální odchylky, tj. pro něž ve funkční závislosti úhlu na úhlu existuje lokální minimum.
Předpokládejme, že náš zakreslený paprsek právě splňuje tuto podmínku. Promítneme-li si stopu paprsku vystupujícího z kapky zpětně na nebeskou klenbu dostaneme zde světelný bod. Vzhledem k tomu, že při lomu paprsku dovnitř a ven z kapky dochází k disperzi světla, bude tento světelný bod rozložen do spektra barev. Od našeho plošného řezu k prostorovému obrazu dospějeme tak, že provedeme rotaci dle zakreslené osy x. Zmíněná zpětná stopa vystupujícího paprsku pak opíše po nebeské klenbě oblouk duhy. Nejvyšší bod má úhlovou výšku nad ideálním obzorem 42-α , když α je úhlová výška Slunce nad obzorem.
Uvedený výklad se týká tzv. hlavní (primární) duhy. Duhy vyšších řádů pak dostaneme při vícenásobných vnitřních odrazech paprsků v kapkách.
Dotaz: Jaké jsou podmínky v ergosféře? Může tam existovat nějaká hmota? (Šarlota)
Odpověď: Ergosféra je oblast blízko horizontu černé díry. Přesněji řečeno je
ergosféra "zdola" ohraničená horizontem a "shora" tzv.
plochou statické limity, což je místo, pod nímž žádný pozorovatel (či fyzikální částice) nemůže zůstávat v klidu vůči vzdáleným pozorovatelům. Tato oblast je tím větší, čím víc černá díra rotuje (tj. čím větší má moment hybnosti).
V ergosféře je vše vlivem gravitace rotující černé díry strháváno do
společné rotace. Tento efekt neexistuje v klasické (Newtonově) teorii
gravitace, ale je přirozeným důsledkem Einsteinovy teorie, již je pro
správný popis silného gravitačního pole černých der nutno použít.
Oblast ergosféry má i další důležité vlastnosti z hlediska fyziky
černých děr. Například je v principu možné v této oblasti urychlovat
částice a dodávat jim energii na úkor rotační energie černé díry, která
se tak postupně zpomaluje. Hmotné částice tedy mohou v ergosféře existovat.
Dotaz: Dobrý den, chtěl bych se zeptat: Jak nejstručnějí popsat rozdíl mezi
tranzistorem a tyristorem? (Čenda)
Odpověď: Klasický bipolární tranzistor (existují i jiné druhy tranzistorů) se skládá ze dvou přechodů PN tvořených třemi vrstvami polovodičů s různým typem vodivosti. Podle uspořádání těchto vrstev se tyto tranzistory rozdělují na PNP a NPN. Bipolární tranzistor má tři vývody: kolektor (C), bázi (B) a emitor (E). Pokud jej zapojíme do série (vývody C-E) se žárovkou (spotřebičem) do obvodu stejnosměrného proudu, můžeme tranzistor sepnout (a tím rozsvítit i žárovku) malým proudem protékajícím přechodem báze-emitor (B-E). Tento proud stačí řádově 100-krát menší než je proud žárovkou. Žárovka přitom svítí pouze pokud protéká proud přechodem B-E. Pro další informace a schemata viz např. zapojení se společným emitorem v (viz skripta z elektroniky). Při zmenšovaní řídícího proudu přechodem B-E se od jeho určité hodnoty tranzistor zavírá - zmenšuje i proud žárovkou, tranzistor pak pracuje v zesilovacím režimu. V tomto režimu je možno řídit velký proud mezi C-E pomocí malého (řádově 100-krát menšího) proudu mezi B-E. Tyristor je vícevrstvá polovodičová součástka určena pouze pro spínací účely. Má (podobně jako tranzistor) tři vývody: anodu (A), katodu (K) a řídící elektrodu (G). Pokud jej zapojíme do série (vývody A-K) se žárovkou (spotřebičem) do obvodu stejnosměrného proudu, můžeme tyristor sepnout (a tím rozsvítit i žárovku) proudovým impulzem mezi řidící elektrodou (G) a katodou (K). Po ukončení proudového impulzu zůstane (pokud je proud žárovkou dostatečný) tyristor sepnutý a žárovka rozsvícena. Vypneme ji pouze přerušením napájení (nebo komplikovanějším způsobem pomocí obvodu paralelně zapojeného k tyristoru). V obvodu střídavého nebo pulzujícího proudu je tyristor vypnut při průchodu okamžité hodnoty proudu nulou (takhle to např. funguje ve stmívačích osvětlení). Z hlediska použití je tedy možno tranzistor i tyristor použít jako spínač, kdy malým proudem bází nebo proudovým impulzem řídící elektrodou ovládáme velký proud protékající spotřebičem. Tranzistor je navíc možno použít jako zesilovač. Tyristor na rozdíl od tranzistoru zůstává sepnutý (“vede“) i po odeznění ovládacího proudu, proud tyristorem musí být přerušen jiným způsobem.
Dotaz: Jaká je teplota varu vody ve vakuu? děkuji. (Alexandra Holoušková)
Odpověď: Žádná. Nebo chcete-li, absolutní nula (0 K).
Voda se bude při každé teplotě vypařovat (vařit), a tedy nad ní v
rovnováze vždy bude vodní pára pod nějakým nenulovým tlakem. Budete-li
tu páru stále odsávat, abyste nad vodou měl vakuum, pak se prostě
všechna voda vypaří - a vy ji odsajete.
Dotaz: Dobrý den, v žádné z mfch tabulek, které mám k dispozici, jsem nenašel nějaké
postižení závislosti hustoty vody na teplotě. Existuje pro ni nějaký vztah?
Děkuji. (Nikola Karafiát)
Odpověď: Spíš než vztah je třeba najít dobré tabulky. Všechny fyzikální
vlastnosti vody jsou velmi podrobně popsány, protože se mj. potřebují
široce v průmyslu. Podívejte se např. v Technické knihovně. Hustota vody
(zejména pak její anomálie při 3,98 oC je zdokumentována velmi důkladně.