Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 1493 dotazů
849) Zdraví neškodlivé tíhové zrychlení
08. 12. 2003
Dotaz: Chtěla bych vědět, jaké tíhové zrychlení je zdraví neškodlivé. Předem děkuji
za odpověď. (Martina)
Odpověď: To záleží jednak na tom, jak moc jste trénovaná a hlavně jak dlouho může
to přetížení působit. Z učebnice FYZIKA (Halliday, Resnick, Walker,
poslední český překlad VUTIUM & Prometheus 2003) zjistíme, že Eli
Beeding na saních vydržel při starlu během 0,04s asi 80g, Kitty
O'Neilová po 3,72s asi 4,8 g a uvidíte 6 fotek J.P.Stappa při 21g čelně
i naopak po dobu 1,4s. Druhá věc je, že při déletrvajícím větším g se
vám odkrvuje či překrvuje mozek, a to jistě zle ovlivní řadu vašich
schopností. Kopíruji vám, co uvání na webu Malá encyklopedie kosmonautiky:
"Fyziologické působení přetížení na člověka se projevuje dvěma
směry. Jednak ztěžuje pohyby těla a jednak působí přelévání krve v těle
(překrvení a odkrvení). Nejmenší výdrž má lidské tělo ve směru nohy -
hlava (negativní přetížení). V tomto směru člověk trvale nevydrží ani 1
g. V opačném směru (hlava - nohy) vydrží po dobu až stovky sekund
přetížení až 3 g. Nejlépe člověk snáší přetížení ve směru hruď - záda
(po dobu desítek sekund snese 15 až 20 g). V této poloze proto obvykle
létají kosmonauti."
Dotaz: 1.) Dobrý den, zajímá mě, jestli nabitá baterie váží více, než když se vybije.
Jestliže je hmota energií, tak by měla být baterie po vybití lehčí, ne?
2.) Pokud vím, tak ve Slunci se mění protony na neutrony za vzniku neutrin a
elektronů. Měl jsem dojem, že právě z onoho náboje vznikne neutrino, jenže na
internetu nějak nejsem schopen najít důvěryhodné informace o hmotnostech
neutronu a protonu... (Vítězslav)
Odpověď: 1.) Čistě teoreticky to pravda je. Baterie je založená na elektrochemickém
principu, energie se získává přechodem elektronů do stavů s nižší energií
a podle speciální teorie relativity toto skutečně odpovídá poklesu
hmotnosti vybité baterie.
Jsou zde ale dvě ale. Jednak je daný rozdíl jen těžko měřitelný (znáte
vztah E=mc2, takže si snadno spočtete, o kolik by vybitá baterie
měla být lehčí), jednak chemické a jiné procesy ve vybíjené baterii mohou
výslednou
změnu hmotnosti ovlivnit mnohem výrazněji (mám na mysli např. unikání
některých látek z baterie nebo naopak, bude to sice zanedbatelné množství,
ale pořád řádově větší než relativistický úbytek hmotnosti).
2.)
elektron 9.10938188(72) x 10-31 kg
proton 1.67262158(13) x 10-27 kg
neutron 1.67492716(13) x 10-27 kg
hm. jednotka u 1.66053873(13) x 10-27 kg
Není ale zcela jasné, jakou reakci máte na mysli. Proton se na neutron za
vzniku protonu, neutrina a elektronu těžko změní např. kvůli zákonu
zachování náboje. Patrně jste měl na mysli β+ rozpad, ve kterém
vzniká neutron, pozitron a elektronové neutrino. Tento proces ovšem zjevně
nemůže být zdrojem energie hvězd (to by muselo při rozpadu vznikat γ
kvantum). Doporučuju nahlédnou do téměř libovolné astronomické knížky
nebo encyklopedie zabývající se hvězdami, tam budou jaderné reakce popsány
ürčitě přehledněji než by to bylo možné zde na pár řádcích.
Odpověď: Voda jednak zabrání přístupu kyslíku k hořícímu objektu (i když to neplatí
stoprocentně, hoření některých látek, např. hořčíku, molekuly vody
rozkládá na vodík a kyslík a vzniklý kyslík hoření dokonce podporuje),
jednak díky své velké tepelné kapacitě účinně hašenou látku ochlazuje.
Dotaz: 1.Žádné hmotné těleso se nemůže pohybovat rychlostí světla. Jaká je tedy
maximální možná rychlost hmotného tělesa? (domnívám se, že pokud bychom to
číslo znali a odečetli ho od rychlosti světla, získaly bychom nejmenší
jednotku času, ale to je v rozporu s tím, že čas se nedělí na kvanta)
2.Pokud posvítím baterkou ze stojícího auta, vyletí z ní fotony určité
vlnové délky. Pokud posvítím baterkou z jedoucího auta, vlnová délka fotonů
se zkrátí a světlo urazí větší vzdálenost, než aby se k jeho rychlosti
přičetla rychlost jedoucího auta. Je moje domněnka správná? (Vašek)
Odpověď: 1. Ono je to tak, že se může pohybovat libovolnou menší rychlostí, než je
rychlost světla. Ve speciální relativitě se často pracuje s koeficientem
Ten udává, kolikrát se zkracují télky, dilatuje čas, zvyšuje hmotnost
apod. Není neobvyklé pozorovat částici, která se pohybuje např.
s γ = 1000 (tj. je např. 1000 x těžší než v klidu). Dopočteme-li v
takovém případě rychlost, vyjde v = 0.9999995 c, tj. do rychlosti světla
chybí jen asi 150 m/s.
2. Ano, v podstatě máte pravdu. Jedním z výchozích principů speciální teorie
relativity je princip konstantní rychlosti světla, čili fakt, že světlo se
pohybuje stejně rychle v každé (inerciální) soustavě. Nevyhnutelným
důsledkem tohoto (z pohledu klasické fyziky poněkud podivného) faktu je
pak mj. vámi zmíněný Dopplerův jev, tj. změna vlnové délky světla při
vzájemném pohybu zdroje a pozorovatele.
Není možné ale relativistický Dopplerův jev zaměňovat s klasickým
(pozorovatelným např. na zvuku). Zde se jedná o zcela jiný princip, zvuk
má (narozdíl od světla) jasně dané prostředí, ve kterém se šíří (vzduch),
zatímco u světla takové prostředí (éter) neexistuje.
Dotaz: Dneska mě při přednášce dějiny fyziky napadla jedna věc. Přednáška se týkala
mimojiné Mendělejovy tabulky prvků a toho, jak ji Mendělejev dělal. Dával si
podle hmotnosti prvky vedle sebe atd.... Mě ale zajímala ta věc, jak zjistil
hmotnost toho prvků? Ptal jsem se i vyučujícího, ale ten mi povídal, že se po
tom také pídil, ale nic nezjistil.
(Jan Bicek)
Odpověď: On ani tak neznal hmotnosti těch prvků, pouze jejich relativní hmotnosti.
V roce 1871, kdy tabulku dokončil, už sice existovaly první pokusy o
stanovení Avogadrova čísla, ty byly ale velmi nepřesné, nicméně
Mendělejevovu práci to nijak neovlivnilo.
Relativní, nebo chcete-li molární hmotnosti lze stanovit nepřímo např. při
pozorování různých chemických reakcí. Když vím chemické složení reaktantů
i produktů, tak porovnáním jejich hmotnosti můžu usuzovat na hmotnosti
jednotlivých prvků. Dále např. plyny mají tu vlastnost, že (za jistých
idealizovaných podmínek) je v daném objemu při dané teplotě a tlaku vždy
stejný počet molekul, stanovením hustoty lze tedy také usuzovat na
hmotnost prvků.