FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 26 dotazů obsahujících »vlnová«

10) Fotony a elektromagnetické záření06. 01. 2004

Dotaz: Světlo má duální charakter - jeho nositelem je jak foton, tak elektromagnetické záření. Vlnová dálka el.mag. záření které považujeme za viditelné světlo, se pohybuje v rozmezí 700nm - 400nm. Rád bych se zeptal: 1) pokud bych dokázal vysílat na frekvenci o vlnové délce řekněme 500nm, svítila by anténa vysílače?
2) pokud ano, kde by se vzaly fotony? Vždyť jen vysílám el.mag. záření.
3) existuje foton i pro el.mag. záření které má nižší nebo vyšší vlnovou délku než viditelné světlo a to i třeba o několik řádů?
Děkuji (Tomáš Trojan)

Odpověď: 1) Pokud bys takový vysílač dokázal sestrojit, tak by zcela jistě svítil. Problém je v tom, že nikdo takovou anténu vyrobit neumí, a to zejména proto, že vlnová délka vysílaného záření odpovídá rozměrům vysílače.
2) Otázka "kde se v el.-mag. vlnění vezmou fotony" je zcela přirozená ale nikdo na ní neumí uspokojivě a jasně odpovědět. Jde o pochopení toho, čemu říkáme vlnově-částicová dualita. Bohužel (či bohudík?) pravda je taková, že názornou představu opírající se o nějakou běžnou zkušenost si v tomto případě udělat nejspíš nelze. Fyzikové se s tímto vyrovnávají většinou tak, že připustí, že elektromagnetické záření se může projevovat jako vlnění i jako tok energetických kvant (fotonů). V některých situacích (např. při interferneci či ohybu) se projeví vlnové vlastnosti, v jiných (fotoefekt) zase částicové. Na otázku, zda je to teď zrovna vlna nebo částice, také odpovedět nelze. Záření má totiž obě vlastnosti současně a je to pouze naše interpretace, že ho jednou vidíme jako vlnu a jindy jako částice.
3) Fotony pochopitelně existují pro záření všech vlnových délek. Pochopitelně proto, že teorie, která by tak fundamentální věc jako kvantování el.-mag. vln připouštěla jen pro nějaký konkrétní interval vlnových délek, by byla přinejmenším podivná. Viditelné světlo se od el.-mag. záření jiných vlnových délek skutečně ničím neliší.
Energie jednoho fotonu závisí na vlnové délce (určitě znáš vzorec E = hf = hc/λ). Čili čím kratší vlnová délka, tím energičtější (říká se také tvrdší) fotony. Takové fotony se budou projevovat velmi znatelně. Naproti tomu fotony odpovídající např. rádiovým vlnám budou tak měkké, že jen obtížně vymyslíme nějaký experiment, při kterém se "částicovost" záření projeví. Můžeš si snadno spočítat jejich energii a porovnat jí třeba s typickou energií chemických reakcí na jednu molekulu.
(J. Houštěk)   >>>  

11) Maximální možná rychlost tělesa05. 12. 2003

Dotaz: 1.Žádné hmotné těleso se nemůže pohybovat rychlostí světla. Jaká je tedy maximální možná rychlost hmotného tělesa? (domnívám se, že pokud bychom to číslo znali a odečetli ho od rychlosti světla, získaly bychom nejmenší jednotku času, ale to je v rozporu s tím, že čas se nedělí na kvanta)
2.Pokud posvítím baterkou ze stojícího auta, vyletí z ní fotony určité vlnové délky. Pokud posvítím baterkou z jedoucího auta, vlnová délka fotonů se zkrátí a světlo urazí větší vzdálenost, než aby se k jeho rychlosti přičetla rychlost jedoucího auta. Je moje domněnka správná? (Vašek)

Odpověď: 1. Ono je to tak, že se může pohybovat libovolnou menší rychlostí, než je rychlost světla. Ve speciální relativitě se často pracuje s koeficientem

Ten udává, kolikrát se zkracují télky, dilatuje čas, zvyšuje hmotnost apod. Není neobvyklé pozorovat částici, která se pohybuje např. s γ = 1000 (tj. je např. 1000 x těžší než v klidu). Dopočteme-li v takovém případě rychlost, vyjde v = 0.9999995 c, tj. do rychlosti světla chybí jen asi 150 m/s.

2. Ano, v podstatě máte pravdu. Jedním z výchozích principů speciální teorie relativity je princip konstantní rychlosti světla, čili fakt, že světlo se pohybuje stejně rychle v každé (inerciální) soustavě. Nevyhnutelným důsledkem tohoto (z pohledu klasické fyziky poněkud podivného) faktu je pak mj. vámi zmíněný Dopplerův jev, tj. změna vlnové délky světla při vzájemném pohybu zdroje a pozorovatele.
Není možné ale relativistický Dopplerův jev zaměňovat s klasickým (pozorovatelným např. na zvuku). Zde se jedná o zcela jiný princip, zvuk má (narozdíl od světla) jasně dané prostředí, ve kterém se šíří (vzduch), zatímco u světla takové prostředí (éter) neexistuje.
(Jan Houštěk)   >>>  

12) Vodivostní pás a vedení elektrického proudu14. 11. 2003

Dotaz: Zajímalo by mě, jakým způsobem se v kovu přenáší el. proud, nechápu pojem "vodivostní pás". Znamená to, že elektrony se pohybují jen z jednoho vodivostního pásu do druhého, kde "vyrazí" další elektron, a to je přenos proudu? (Jana Šupíková)

Odpověď: Elektrický proud v kovech vedou elektrony, které se téměř volně pohybují v mřížce atomů kmitajících kolem rovnovážných poloh. Tyto elektrony se oddělily od atomů, které mají tím pádem kladný náboj a elektronům znesnadňují pohyb. Kov má proto elektrický odpor. K tomu, aby tekl kovovým drátem elektrický proud, musí se na jeho konce přiložit elektrické napětí. Jak se s klesající teplotou zmenšují kmity atomů mřížky, klesá i elektrický odpor. Neklesne na nulu, protože elektronům stojí v cestě i nečistoty, nepravidelnosti a poruchy mřížky, které jsou vždycky přítomny. Tento zdroj odporu na teplotě nezávisí a projeví se tedy v nízkých teplotách. Čím je materiál čistší, tím lépe vede elektrický proud.
Toto je tedy klasický pohled na vedení proudu v kovech. Mnohé jevy v mikrosvětě vysvětlíme však jen s pomoci kvantové teorie. Elektron si nelze představovat jako přesně ohraničenou kuličku, popisuje se spíše vlnovou funkc9 a vyskytuje se tam, kde má vlnová funkce velkou hustotu. Podle kvantové teorie mohou mít elektrony v atomech jen určit0 hodnoty energie. Fermiho statistika, kterou se elektrony řídí, dovoluje, aby se na jisté hladině energie nacházely vždy jen dva elektrony a ještě s opačným vlastním mechanickým a magnetickým momentem (spinem). Přiblíží-li se atomy k sobě tak blízko, že vytvoří strukturu pevné látky, jejich energetické hladiny se posunou a promísí tak, že vytvoří pás energií. Volně elektrony opouštějí vlivem tepelné energie tento pás (nad tzv. Fermiho energií) a podílejí se na vedení proudu. Pás, o kterém se zmiňujete, není tedy žádná jízdní dráha nebo kanál, jimiž by elektrony proudily, nýbrž je to pás ve spektru energií. Vznikne-li přiblížením některých druhů atomů (kondenzací) místo kovů polovodič, je nad zmíněným valenčním pásem zakázaný pás energií, nad nímž se nachází vodivostní pás, kam se musí nositelé náboje (elektrony nebo díry po elektronech) dostat, aby mohly vést proud. Polovodič vede tedy tím lépe, čím více nositelů náboje může přeskočit z valenčního pásu do vodivostního pásu. Odpor polovodiče tedy s teplotou klesá.
Materiály, které mají široký zakázaný pás, přes který se elektrony už nemohou dostat, se chová jako izolátor.
V krátkosti jsem mohl podat jen takovéto hrubé vysvětlení. Nahlédněte do nějaké učebnice fyziky pevných látek. Dozvíte se tam i o takových zvláštních vodičích, jako jsou supravodiče.
(Doc. RNDr. Miloš Rotter, CSc.)   >>>  

13) Proudění vody v moři06. 10. 2003

Dotaz: Chci se zeptat, jak je možné, že ať stojíme na jakémkoliv místě mořského pobřeží, mořské vlny k němu přicházejí vždy téměř kolmo. Není to v rozporu s prouděním vody v moři? (Anča)

Odpověď: Nejsem oceánografický expert, ani nemám velkou zkušenost s vlnami, ale pokusím se vyslovit jistý odhad. Zaprvé vlny znamenají kruhový pohyb částic vody zhruba do hloubky rovné polovině vlnové délky. Tím nevzniká problém s prouděním vody v moři, neboť se voda mele vpodstatě na místě, i když vidíte vrcholy vln běžet.
Zadruhé při příchodu k pobřeží se vlny zpomalují (to už dno začíná hrát roli), vlnová délka se zkracuje. To ale současně znamená změnu směru, stejně jako když se světlo láme do prostředí, kde je pomalejší (tj. ke kolmici). Ať už vlny přicházejí z jakéhokoli směru, u pobřeží pak nejsou daleko od kolmice k němu. Tento odhad je konzistentní s informacemi např. v hezkých článcích http://www.tulane.edu/~sanelson/geol111/oceans.htm , http://geology.csupomona.edu/drjessey/class/Gsc101/OceanographyII.html . Další si jistě najdete i sama, do googla jsem psal kombinaci klíčových slov jako waves sea direction perpendicular coast ...
(J.Dolejší)   >>>  

14) Časoprostorová smyčka19. 08. 2003

Dotaz: Je možné vytvořit časoprostorovou smyčku v našich podmínkách a pokud ano, jaké pro to plynou důsledky a jak se dají řešit. Prosil bych o podrobnou analýzu. Zatim jsem zjistil, že nic tomu teoreticky nebrání A jeste jeden dotaz: Jsou už nějaké výsledky z oboru kvantové teorie gravitačního pole. Pokud ano, prosil bych o jejich zaslání. (David)

Odpověď: Nejdříve co je míněno uzavřenými časovými smyčkami: Protoročas obsahuje uzavřené časové smyčky, pokud se v něm pozorovatel (žijící ve svém lokálním času neustále dopředu) může navrátit do situace, ve které již jednou byl. Tj. pokud se může dostat do "prostoročasové" oblasti, kde se již nacházel (na stejné místo ve stejném čase). Proto se také uzavřeným časovým smyčkám často populárně říká stroje času - umožňují se dostat do své vlastní minulosti.

"Je možné vytvořit časoprostorovou smyčku v našich podmínkách a pokud ano, jaké pro to plynou důsledky a jak se dají řešit."
Pokud je dotazem míněno, zda je v rámci našich technických možností někdy v blízké budoucnosti vyrobit uzavřenou časovou smyčku tak odpověď zní "NE". Pokud je míněno, zda naše souhrnné současné znalosti a teorie připouštějí uzavřené časové smyčky, tak odpověď zní "Nevíme jistě, ale nejspíš ne."

"Zatim jsem zjistil, že nic tomu teoreticky nebrání..."
Zde je však nutno dodat, že možnost existence uzavřených časových smyček byla a je v teoretické fyzice zkoumána - zejména v obecné teorii relativity (teorii popisující prostor, čas a gravitaci). Tento zájem vedl k překvapivému zjištění, že uzavřené časové smyčky nejsou zas tak paradoxní, jak se dlouho předpokládalo. Ukazuje se, že samotná teorie prostoru a času, bez specifických odkazů na teorii hmoty, a priori uzavřené časové smyčky nevylučuje.
Problém nastává, když do okolí časově uzavřené smyčky chceme umístit hmotu. V takovém případě může totiž hmota, která se vrátí zpět do minulosti, interagovat sama se sebou - a to může vést ke sporům. Ze sci-fi literatury jsou asi nejznámější různé varianty situace, kdy cestovatel v čase zabrání tomu, aby se sám narodil - což je evidentně logicky sporné.
Podobný paradox lze naformulovat i pro systémy, které máme dostatečně pod kontrolou, tj. pro systémy, jejichž lokální chování velmi dobře známe - např. pro systém pružných koulí. V blízkosti stroje času by zručný hráč kulečníku mohl namířit kouli tak, aby se po průletu strojem času trefila sama do sebe a odchýlila se z dráhy vedoucí do stroje času. Analýza takovýchto jednoduchých systémů překvapivě vedla ke zjištění, že nejsou nutně sporné. Konkrétně, že pokud požadujeme platnost lokálních zákonů (u kulečníkových koulí např. první Newtonův zákon a zákon odrazu) v prostoročase obsahujím uzavřené časové smyčky, tak skoro všechny počáteční podmínky mají logicky konzistentní globální časový vývoj splňující zmíněné lokální zákony. (Tento výrok však např. neplatí v dvou dimenzionálním prostoročase.)
Tj., i experiment, kdy se chceme koulí vystřelenou skrze stroj času trefit do ní samotné, bude mít konzistentní řešení; lišící se však od toho, co bychom očekávali. Jeden typ řešení bývá, že koule vyletí ze stroje času po trajektorii mírně odlišné než jsme očekávali, své mladší verze se dotkne pouze mírně - ne čelně, jak jsme plánovali - a pouze trochu změní svoji trajektorii. Mladší verze tak do stroje času vletí po mírně jiné dráze, což bude konzistentní s odlišnou dráhou po které ze stroje času vylétne.
Taková analýza byla však provedena pouze pro několik jednoduchých systémů. Obecně se ukazuje, že pokud hmota může interagovat sama se sebou pouze "jednoduchým" způsobem (např. pro pole platí princip superpozice), tak přítomnost uzavřených časových smyček nevede nutně ke sporu. Na druhou stranu se zdá evidentní, že pro dostatečně složité systémy (nelineární interakce, nespojité "reakční" funkce, ...) uzavřené časové smyčky ke sporu vedou. Což znamená, že buď musí být zakázány uzavřené časové smyčky nebo modifikovány ony silně interagující teorie.
Teorie uzavřených časových smyček se též zabývala otázkou vzniku těchto smyček. Je znám mechanizmus, kdy se z červí díry (zkratka spojující dvě místa v prostoročasu podobě jako ucho na hrníčku spojuje dvě místa na jinak válcovitém povrchu hrníčku) dá vyrobit stroj času. Mohlo by se tak zdát, že spornost uzavřených časových smyček nutně vede ke spornosti červích děr. Zůstává v±ak otevřená otázka, zda se při vzniku uzavřené časové smyčky z červí díry neuplatní právě výše diskutovaná interagující hmota a jakousi kumulací samointerakce nezabrání vzniku smyčky. Např. S. Hawking je o existenci takovéhoto "principu kauzální ochrany" přesvědčen. Pokud se však vrátím k otázce experimentální. I kdyby se ukázalo, že teorie uzavřené časové smyčky připouští, je zcela jasné, že podmínky a škály, které hrají roli při vzniku a udržování uzavřených časových smyček jsou zcela mimo rámec našich (nejen současných) možností. Proti výrobě stroju času jsou cesta k nejbližší hvězdě či výroba velkého kvantového počítače vysoce realistické projekty. A to bych normálně tyto projekty označil za utopii, které se ještě hodně generací nedožije (i když bych si přál, abych se mýlil).

"Prosil bych o podrobnou analýzu."
Odstavce výše nebyly podrobnou analýzou. Podrobná analýza tohoto tématu nelze podat v e-mailu. O složitých věcech lze mluvit jednoduše pouze do určité úrovně. Pokud chcete vědět více, musíte hodně investovat a naučit se jazyk, ve kterém se prostor a čas popisuje. Nejjednodušší cesta jak rozumět strojům času je vystudovat teoretickou fyziku a zabývat se obecnou teorií relativity (případně kvatovou gravitací hrající roli v otázce vzniku uzavřených časových smyček). Neexistuje jednodušší cesta - bez technické porozumění příslušných rovnic a modelů zůstanete vždy jen na okraji velmi zajímavé oblasti našich znalostí o světě. Na okraji, který sám o sobě je velmi zajímavý, ale za ním stojí ještě mnohem víc.
Nicméně na populární úrovni bych doporučil knížku R. Gotta III "Cestování Einsteinovým vesmírem" a hlavně knížku od Kipa Thorna, zabývající se vedle strojů času ještě mnoha jinými tématy. Ta by měla vyjít v Mladé frontě někdy příští rok. Neznám přesně český název, ale bude to určitě jediná kniha od tohoto autora a bude to jedna z nejlepších popularizačních knih na našem trhu.

A ještě jeden dotaz: Jsou už nějaké výsledky z oboru kvantové teorie gravitačního pole. Pokud ano, prosil bych o jejich zaslání.
Nějaké výsledky jsou a není jich málo. Nicméně myslím, že pořád lze bezpečné říci, že nemáme konzistentní úplnou teorii kvantové gravitaci. Kandidátů na ni (či spíš směrů, ve kterých se tato terie hledá) je několik:
~~ Asi nejznámější a největší oblast, ve které se kvantová gravitace hledá, je "teorie strun" (teorie zkoumající 2-dimenzionální - a dnes i více-dimenzionální - objekty v prostorech vyšších dimenzí, ve kterých se na kvantové úrovni objevují různé módy připomínající gravitony). Pod teorií strun se však v současnosti skrývá tak široké pole různých teorií a modelů, že je obtížné i pro odborníka se zde orientovat.
~~ Již letitým kandidátem je "supergravitace" (teorie zapojující fermiony do samotné geometrické struktury prostoročasu).
~~ Dalším nadějným kandidátem jsou tzv. "teorie smyčkové gravitace" (teorie snažící se popsat gravitaci pomocí nových proměnných, ve kterých by bylo možné provést standardní kvantování; tyto proměnné jsou typicky parametrizované smyčkami v prostoročase a odtud název "smyčková gravitace").
~~ Vedle toho lidé též pracují v rámci "nekomutativní geometrie". (Zde se přeformuluje teori prostoročasu do formy, kdy násobení funkcí na prostoročasu není komutativní. Tímto se např. "rozmaže" pojem bodu.)
~~ V neposlední řadě se gravitace kvantuje přímočarým způsobem "sčítáním přes historie" (vlnová funkce vesmíru je dána funkcionálním integrálem přes všechny realizovatelné geometrie), tento přístup se však potýká s zatím nezvládnutými technickými potížemi.
Všechny výše uvedené teorie se testují na modelech, kdy se většina stupňů volnosti gravitačního pole ignoruje - na tzv. "minisuperprostorových modelech".
V případě kvantové gravitace je velmi obtížné podávat známé výsledky na populární úrovni. Uvědomme si, že se zde setkává kvantová teorie a teorie prostoročasu. Obě teorie samotné jsou velmi obtížné na pochopení, natož jejich skloubení. Odpovídáme si zde na otázky, co znamená kvantování prostoru a času, kde slovo "kvantování" znamená něco mnohem složitějšího než nějaká "diskretizace", jak se často populárně uvádí. I v těch nejkonzervativnějších přístupech ke kvantové gravitaci se mluví o superpozicích různých prostoročasů, prostoročasové pěně, tunelování geometrií, vzniku vesmíru z "ničeho", atd. Tyto hesla sice znějí velmi zajímavě a lákavě, ale bez podrobného technického zázemí maji skoro prázdný obsah.

Proto, ještě více než u strojů času, je v případě zájmu o kvantovou gravitaci potřeba doporučit: vystudujte 5 let teoretickou fyziku - když se budete hodně snažit, tak pak budete schopni si o kvantové gravitaci číst. Vystudujte další 4 roky doktoradnské studium na zahraniční univerzitě a když budete dobří, tak budete schopni v oblasti kvantové gravitace pracovat. A čekáme na někoho, kdo bude geniální a kvantovou gravitaci vymyslí.
(Mgr. Pavel Krtouš, Ph.D.)   >>>