FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 26 dotazů obsahujících »vlnovou«

14) Přenos informace15. 08. 2003

Dotaz: Pokud jsou dvě hvězdy od sebe velmi vzdálené, mají stejnou hmotnost a jedna se srazí s tělesem a svou hmotnost změní, změní se působící gravitační síla této hvězdy na druhou až po určité době. Žádná informace se totiž nemůže šířit rychleji než legendárních 299 792 458 m/s a okamžitá změna by vlastně znamenala nekonečnou rychlost přenosu informace.
Chci se zeptat: 1. Jak je potom možné, že se dvě častíce od sebe vzdálené mohou ovlivnit okamžitě? Je to něco jako nelokální transformace. Anebo 2. Co kdyby se ta informace o zmněně gravitačního pole přenesla z jedné hvězdy na druhou přes červí díru (neboli skrz hyperprostor) a změna by se udála najednou? (Mark D.)

Odpověď: Nejsem specialista v této oblasti, takže jen náznakem:
Částici míníte zřejmě kvantovou, nikoli makroskopickou. Popis kvantových částic je však mnohem složitější, než jak se pro názornost prezentuje, když se mluví o "částici". V kvantové teorii je "částice" popsána např. svou vlnovou funkcí (nebo i jinak, např. stavovým vektorem - ekvivalentním vlnové funkci, anebo maticí hustoty, jde-li o tzv. smíšený stav) a její "poloha" není jejím prostým atributem, jako je tomu u částice klasické, ale čímsi, čeho střední hodnota či pravděpodobnost výsledku měření se z vlnové funkce (stavového vektoru, matice hustoty) počítá jako výsledek působení oprátoru polohy částice, vyjádřeného způsobem odpovídajícím zápisu vlnové funkce (stavového vektoru, matice hustoty). Za obvyklých sitauací nejsou proto Vámi zmíněné relativistické efekty středem zájmu a neuvažují se. (Asi jako když máte v elektronice ideové schéma zvukového předzesilovače s filtry atd., na začátku máte slabý signál ze snímací hlavy, na konec upravený a silnější signál postoupený dál. Samozřejmě to nenarušuje zákon zachování energie, protože ten předzesilovač je nějak napájený atd., ale Vás zajímá spíš jen osud signálu a jeho změny než skutečnost, že se i zde zachovává energie.)
Pokud je mi známo, tak dosud není vytvořena vnitřně konzistentní teorie zahrnující i kvantovou teorii, i obecnou teorii relativity; přesto pokládám za přijatelné, že obě teorie jsou ve svých pracovních oborech natolik správné (= v souladu s experimentem, s vnitřní konzistencí a se schopností predikovat), že jsou prakticky použitelné a používané.
(J.Obdržálek)   >>>  

15) Metody měření rychlosti světla31. 03. 2003

Dotaz: Zajímalo by mě, jaké jsou metody měření rychlosti světla ve vakuu. (Robert Fiala)

Odpověď: Klasické jsou metody optické. Při koherentním světle vytvoříme interferenční obrazce ze dvou paprsků, z nichž jeden proletí měřenou vzdálenost (případně vícekrát po odrazu na zrcadle). Uvážíte-li vlnovou délku světla, je zřejmé, že jde o měření velice citlivá a přesná. Uvažujete-li o ověřování teorie relativity, pak uvažte, že můžete k měření použít také světlo mimozemských zdrojů; světlem hvězd získáváte zdroj, který se vůči Vám pohybuje s rychlostí v průběhu roku proměnnou o + - 30 km/s (oběžná rychlost Země kolem Slunce. Také můžete měřit rychlost radiových vln (což je rovněž elektromagnetické vlnění).
Pro přesný popis interferometrů doporučuji speciální literaturu z fyzikální optiky.
(J.Obdržálek)   >>>  

16) Energie záření20. 03. 2003

Dotaz: Ráda bych se zeptala: 1) zda roste s vlnovou délkou energie záření? 2) na závislost mezi vlnovou délkou a citlivostí u PN fotodetektoru. (Petra Andrýsková)

Odpověď: 1/ Ta otázka je trochu zavádějící. NEJMENŠÍ MNOŽSTVÍ, jakési zrníčko energie (kvantum), které se může předat na frekvenci f, je úměrné této frekvenci : Emin(f) = hf . Vlnová délka je nepřímo úměrná frekvenci, takže čím větší vlnová délka, tím menší je to nejmenší kvantum, které se může předávat. Energie můžu vydat nebo předat nebo přijmout kolik chci, ovšem bude to jen celý počet (zpravidla obrovský) těchto kvant.
 Pokud mám situaci takovou, že se mi hodí vlnový popis, pak vlna s frekvencí f má tvar A = A0.cos(2.pi.f.t + fi0), kde A0 je amplituda, pi = 3,14..., t je čas a fi0 je fázová konstanta; celý výraz v závorce se nazývá fáze. Takováto vlna má energii úměrnou A2 f2, čili při STEJNÉ AMPLITUDĚ roste energie kmitů se čtvercem frekvence (neboli klesá nepřímo úměrně čtverci vlnové délky).
Ptáte-li se ale, jak u konkrétného zdroje vln (třeba u rozžhavené tyče) závisí vyzařovaná energie na vlnové délce, ptáte se na vyzařovací charakteristiku příslušného děje (např. záření černého tělesa). Na to ovšem není žádná univerzální odpověď, to potřebuje znát onen děj.
(J.Obdržálek)

2/ Citlivost (proudová či napěťová) PN fotodiody je v ideálním případě přímo úměrná vlnové délce dopadajícího záření. Pro reálnou fotodiodu existuje dlouhovlnná mez (citlivost u určité vlnové délky prudce klesá k nule) a navíc je ta lineární část snížena vlivem povrchové rekombinace.
(Doc. RNDr. Pavel Moravec, CSc.)   >>>  

17) Vznik ultrafialové záření17. 03. 2003

Dotaz: Potřebovala bych vysvětlit vznik ultrafialového a infračerveného záření. (Karolína Melicharová)

Odpověď: Milá Karolíno, je to vlastně jako vznik světla - jen trochu kratší nebo delší vlnová délka. Nejobvyklejším zdrojem je dostatečně rozehřátý předmět; infrazářič ani nemusí být tak rozpálený. Efektivnějším zdrojem jsou různé výbojky, kde se vytváří jen mnohem užší část spektra. Nízkotlaké dávají poměrně ostré čáry odpovídající přechodům elektronů mezi jednotlivými povolenými hladinami (chcete-li UV, použijte třeba rozšířenou rtuťovou), vysokotlaké dávají širší - pásové - spektrum, a mají větší účinnost. No a tu a tam může vzniknout příslušné záření i jinde při "přeměně energie" - jako třeba při některých chemických reakcích. Fluoreskující či fosforeskující látky zase mohou měnit záření dopadající na ně s jistou vlnovou délkou na záření s vlnovou délkou větší ("červenější").
(J.Obdržálek)   >>>  

18) Elmag.vlnění21. 02. 2003

Dotaz: V učebnici pro 9.třídu se probírá elmg. vlnění a rozděluje se na 7 typů (rádiové vlny, mikrovlny, ultrafialové záření, světlo, infračervené záření, gama z., rentgenové z.). Nevím, jak je které "silné", kterými předměty prochází? (Jana Wernerová)

Odpověď: Když jdete od delších vlnových délek ke krátkým, tak pronikavost vlnění zprvu klesá a pak zase stoupá, pokud neuvažujeme materiály, které jsou vyjímečně "průhledné". Velmi zhruba můžete za orientační hodnotu považovat vlnovou délku, "vlnění totiž musí i do neproniknutelného materiálu kus zalézt, aby poznalo, že to nejde." Dlouhovlnné rádiové vlny vlezou všude, také se snadno ohýbají. Jdete-li ke kratším rádiovým vlnám, resp. k mikrovlnám, pak jejich pronikavost klesá na centimetry, decimetry (proniknou kusem masa v mikrovlnce, v místech se slabým signálem mobilu záleží na tom, jak se otočíte nebo jestli zalezete do hustého lesa. S viditelným zářením máme zkušenosti všichni, UV a IFC jsou těsně vedle, spíš záleží, jak moc je materiál průhledný, např. atmosféra s/bez ozonovou/é dírou/y pro UV. Rentgenové záření pak zase je více pronikavé, typická tloušťka zeslabení na polovinu jsou milimetry materiálu. Víceenergetické gama záření je pak ještě více pronikavé, typická polotloušťka jsou centimetry.
(J.Dolejší)   >>>