Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 22 dotazů obsahujících »dopadající«
16) Proč světluška svítí
19. 05. 2003
Dotaz: Na jedné debrujárské schůzce jsme narazili na problém, proč svítí svatojánské
mušky. Mohli byste mi prosím pomoci s vysvětlením? (Rostislav Petr)
Odpověď: Ke vzniku luminiscence je třeba dodat látce energii. Tato energie může být různá
a podle jejího původu rozlišujeme různé druhy luminiscence:
fotoluminiscence - energii dodává ultrafialové nebo viditelné světlo
elektroluminiscence - zdrojem energie je elektrické pole nebo elektrický proud
katodoluminiscence - vyvolává ji svazek elektronů dopadající na obrazovku televizoru
radioluminiscence - původcem jsou radioaktivní látky
sonoluminiscence - je vyvolána ultrazvukem
triboluminiscenci - původ má v mechanické deformaci
chemiluminiscence a bioluminiscence - vyvolávají ji chemické procesy probíhající v živých organismech.
Základní krok k pochopení jevů bioluminiscence učinil biolog Raphaél Dubois,
který odhalil, že světlo vzniká během zvláštní biochemické reakce, kterou lze shrnout takto:
luciferin + kyslík -----(luciferáza)-----> oxyluciferin + světlo
Luciferin reaguje s kyslíkem díky enzymu luciferáze, který hraje
roli katalyzátoru chemické reakce. Tím vznikne oxyluciferin ve stavu
energeticky excitovaném, což dovoluje vyzařování světla. Další podrobnější informace
se dočtete například na této stránce:
http://www.quido.cz/100/biolum.htm .
Dotaz: Ráda bych se zeptala:
1) zda roste s vlnovou délkou energie záření?
2) na závislost mezi vlnovou délkou a citlivostí u PN fotodetektoru.
(Petra Andrýsková)
Odpověď: 1/ Ta otázka je trochu zavádějící.
NEJMENŠÍ MNOŽSTVÍ, jakési zrníčko energie (kvantum), které se může
předat na frekvenci f, je úměrné této frekvenci : Emin(f) = hf . Vlnová délka
je nepřímo úměrná frekvenci, takže čím větší vlnová délka, tím menší je to
nejmenší kvantum, které se může předávat. Energie můžu vydat nebo předat
nebo přijmout kolik chci, ovšem bude to jen celý počet (zpravidla obrovský)
těchto kvant.
Pokud mám situaci takovou, že se mi hodí vlnový popis, pak vlna s
frekvencí f má tvar A = A0.cos(2.pi.f.t + fi0), kde A0 je amplituda, pi =
3,14..., t je čas a fi0 je fázová konstanta; celý výraz v závorce se nazývá
fáze. Takováto vlna má energii úměrnou A2 f2, čili při STEJNÉ AMPLITUDĚ
roste energie kmitů se čtvercem frekvence (neboli klesá nepřímo úměrně
čtverci vlnové délky).
Ptáte-li se ale, jak u konkrétného zdroje vln (třeba u rozžhavené
tyče) závisí vyzařovaná energie na vlnové délce, ptáte se na vyzařovací
charakteristiku příslušného děje (např. záření černého tělesa). Na to ovšem
není žádná univerzální odpověď, to potřebuje znát onen děj. (J.Obdržálek)
2/ Citlivost (proudová či napěťová) PN fotodiody je v ideálním případě přímo
úměrná vlnové délce dopadajícího záření. Pro reálnou fotodiodu existuje
dlouhovlnná mez (citlivost u určité vlnové délky prudce klesá k nule) a
navíc je ta lineární část snížena vlivem povrchové rekombinace.
Dotaz: Potřebovala bych vysvětlit vznik ultrafialového a infračerveného záření. (Karolína Melicharová)
Odpověď: Milá Karolíno,
je to vlastně jako vznik světla - jen trochu kratší nebo delší vlnová
délka. Nejobvyklejším zdrojem je dostatečně rozehřátý předmět; infrazářič
ani nemusí být tak rozpálený. Efektivnějším zdrojem jsou různé výbojky, kde
se vytváří jen mnohem užší část spektra. Nízkotlaké dávají poměrně ostré
čáry odpovídající přechodům elektronů mezi jednotlivými povolenými
hladinami (chcete-li UV, použijte třeba rozšířenou rtuťovou), vysokotlaké
dávají širší - pásové - spektrum, a mají větší účinnost. No a tu a tam může
vzniknout příslušné záření i jinde při "přeměně energie" - jako třeba při
některých chemických reakcích. Fluoreskující či fosforeskující látky zase
mohou měnit záření dopadající na ně s jistou vlnovou délkou na záření s
vlnovou délkou větší ("červenější").
Dotaz: Představte si tenkou vrstvu, dopadá na ni z jedné strany světlo, odráží se
jak od jedné tak od druhé strany vrstvy, pokud bude mít
vrstva správnou tloušťku tak odražené vlnění zinterferuje a zanikne.
Zajímalo by mě, jestli opravdu v tomto případě zanikne elektromagnetické
vlnění a kam se ztratí energie, kterou nese. (Tomáš Kučera)
Odpověď: Zanedbáme-li pohlcování světla, pak se energie elektromagnetické vlny
zachovává. Na rozhraní se ovšem dělí energie vlny dopadající mezi energii
vlny odražené a procházející. Najděte si v učebnicích elektromagnetického
pole odvození Fresnelových vzorců, to je přesně toto.
Dotaz: Prosím Vás, je pravda, že za působení většího napětí na elektronovou trysku z televize nevyletují elektrony, ale rentgenové záření? Jak velké by muselo být napětí? (Dave)
Odpověď: Milý kolego, v běžných rentgenech vzniká rentgenové
záření tím, že intenzivní paprsek urychlených elektronů
dopadá na materiál (např. tepelně odolný kov s vysokým Z),
brzdí se v něm a tím budí brzdné rentgenové záření
(rentgenové záření odnáší jen část absorbované energie,
proto musí materiál něco vydržet a ještě být chlazen).
Vyrábí se na to speciální součástka, "rentgenka".
Spektrum rentgenového záření závisí na energii
dopadajících elektronů - elektrony letící obrazovkou s
energií lehce nad 10 keV, které se zabrzdí v luminescenční
vrstvě a případně skle, budí také rentgenové záření,
ale tak měkké, že tloušťka např. hliníku potřebná na
jeho zeslabení na polovinu ("polotloušťka") je něco
kolem desetiny milimetru (takže tlusté sklo obrazovky ho
prakticky pohltí), pro praktické účely, např. rentgenování
zlomených kostí, je potřeba mít urychlovací napětí
desítek kV, např. pro 100 keV je už buzené rentgenové
záření tak pronikavé, že odpovídající polotloušťka
hliníku je 1,6 cm.
Je to takto:
1) Napětí mezi rozežhavenou katodou obrazovky a okolím
vytváří elektrické pole v okolí katody. Je-li toto pole
dostatečně silné, vytrhne z ní elektron; část energie (tzv.
výstupní práce) se přitom použila na "vytržení"
elektronu z materiálu katody, zbytek si nese elektron s sebou
jako kinetickou energii. V oblasti energií v televizoru nám
stačí počítat nerelativisticky, tedy kinetická energie je
rovna Ek = 1/2 m v2. Nic jiného z katody
nevylétává.
2) Elektron je dále urychlován a usměrňován elektrickým i
magnetickým polem v obrazovce, až dopadne na příslušné
místo stínítka. Během svého letu neztrácí energii
žádným vyzařováním. (To by přicházelo v úvahu až v
mnohem mohutnějších zařízeních typu synchrocyklotronu s
mnohem většími energiemi.)
3) Dopadem na příslušné místo stínítka se elektron
zabrzdí. Část jeho energie se spotřebuje mechanismem, který
vede k tomu, že stínítko na tom místě zasvítí, zbytek
energie se promění dílem na zahřátí a deformaci
prostředí, kam elektron dopadl, dílem na elektromagnetické
záření, tzv. brzdné záření. To má dvě výrazně
rozlišné části - spojité spektrum vznikající
principiálně vždy, když se elektricky nabitá částice
urychluje (anebo brzdí, to je prostě urychlování se
záporným znaménkem), a čárové spektrum, určené
materiálem, v němž se elektron brzdí. Část brzdného
záření padne i do rentgenových oblastí elektromagnetických
vln ("měkké rentgenovo záření"), ovšem je
poměrně slabá. Urychlující napětí obrazovky je deset až
pětadvacet tisíc voltů, což není zas pro tento účel tak
moc, záření se na své další cestě pohlcuje a samozřejmě
na rozdíl od rentgenky je obrazovka koncipována tak, aby
rentgenova záření k divákovi došlo co nejméně.