Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 40 dotazů obsahujících »elektronu«
24) Struktura protonu a dalších částic
21. 06. 2003
Dotaz: Zajímalo by mě z čeho je složen proton? Popřípadě z čeho jsou další
elementární částice? V podstatě mi jde o to co je to za hmotu a jak vlastně
vypadá? (Miloš Pařízek)
Odpověď: Stručně lze říci, že proton je složen z kvarků.
V současnosti známe šest kvarků, které se liší nábojem, hmotností
a dalšími vlastnostmi.
náboj
Kvarky
2/3
Up
Charm
Top
-1/3
Down
Strange
Botton
(náboje jsou uváděny v násobcích absolutní hodnoty náboje elektronu)
Existuje celá spousta částic (tzv. baryony, řecky
βαρυοσ - těžký), které se skládají
ze tří kvarků: proton je složený z kvarků uud, neutron z ddu
apod. (zkuste si sečíst náboje těchto kombinací, sedí s náboji protonu a neutronu!)
Vedle toho existují částice zvané mezony (řecky
μεσοτρον - střední, podle toho, že
mají hmotnost mezi hmotností protonu a elektronu),
které lze vysvětlit jako kombinace kvarku a antikvarku,
například pion π+ jako u anti-d.
Částice složené z kvarků obecně nazýváme hadrony (řecky
'αδροσ - silný, neboť jsou citlivé
na silnou interakci), známe jich dnes stovky a
liší se obsahem kvarků a tím, jak se uvnitř kvarky "hemží".
Jak jsme zjistili, z čeho se proton skládá? To lze provést například v
experimentech, kdy ostřelujeme proton elektrony. Proton se choval jako
objekt složený z více částic, od kterých se elektron odrážel.
Vedle částic složených z kvarků jěště známe další, kam patří i známý elektron,
a souhrně je označujeme jako leptony (řecky
λεπτοσ znamená lehký). Jde o elektron a
jemu podobné částice mion a tauon (jakési těžší varianty elektronu) a
neutrina, velmi lehké částice bez náboje.
náboj
Leptony
0
νe
νμ
ντ
-1
elektron e
mion μ
tauon τ
Za elementární částice dnes považujeme právě kvarky a leptony, které se v
experimentech zatím jeví jako bez další vnitřní struktury.
Další elementární částice jsou ty, které zprostředkovávají interakce mezi
částicemi, jde o foton, bosony W, Z a gluony.
Pro další informace se podívejte do sekce Atomy, jádra, částice v naší
Odpovědně, případně si zde vyhledejte pojem "kvarky".
Dalším užitečným zdrojem je populární
text o standadním modelu mikrosvěta od J. Hořejšího.
Pěkná je též knížka Pan Tompkins stále v říši divů od George Gamowa,
jejíž nové vydání doplněné Russelem Stannardem se zabývé též částicovou fyzikou.
Dotaz: Neutron se rozpadne na proton, elektron a neutrino, přestože je neutron (1x
up-kvark + 2x down-kvark i proton (2x up-kvark + 1x down-kvark) složen pouze
z kvarků. Je nějaké jednoduché vysvětlení? (Rostislav)
Odpověď: Je. Rozpady elementárních částic jsou dosti nepodobné rozpadu například
zteřelé nákupní tašky, ze které vypadávají jednotlivé věci, které tam
byly. V případě částic jde o přechod do odlišného stavu (když řeknu do
jiného stavu, tak to vyvolává jiné asociace) - ve vašem příkladu d-kvark
přejde na u-kvark (vlivem slabé interakce) se současným vysláním elektronu
a neutrína. d-kvark tam pak UŽ není, u-kvark tam před rozpadem nebyl,
elektron a neutrino taky ne.
Dotaz: Chtěl bych se zeptat, jestli nevíte něco o problematice měření el. náboje
a malých napětí. (Mirek Maroušek)
Odpověď: Milý Mirku,
velikost elektrického náboje poprvé změřil Millikan. Jeho pokus už je v
Odpovědně popsán (napište do vyhledávacího okénka heslo Millikan).
Millikan v letech 1913-1917 prokázal Thomsonův předpoklad, že hmotnost
vodíkového iontu je asi dvěstěkrát větší než hmotnost elektronu. Vyrobil
speciální Millikanův kondenzátor, kterým měřil elektrické náboje malých
olejových kapiček, a zjistil, že náboj elektronu je elementárním kvantem
jakéhokoliv elektrického náboje.
Věnoval se i měření Planckovy konstanty, kterou určil na základě měření
frekvence a energie elektronů, vycházel přitom z fotoelektrického efektu.
Na další informace se podívejte například na stránku:
http://www.pef.zcu.cz/pef/kof/cz/di/pks/PROGRAMY/millikan/millikan.doc .
O měření napětí se dočtete například tady:
http://lucy.troja.mff.cuni.cz/~tichy/kap4/4_1.html . Další spousty stránek
na toto téma najdete, když do googlu napíšete heslo "low voltage
measurements".
Malá napětí se nejlépe měří pomocí digitálních multimetrů, podrobnosti o
jejich vlastnostech se dozvíte na stránce:
http://www.sapro.cz/sorti/digimetr.html .
Dotaz: Chtěl bych vědět, co přinutí elektron, kterému předtím byla dodána energie
a on přeskočil na vyšší kvantovou dráhu, vrátit se zpět. Jaké síly na něj
působí?
2. Kam se ztratila antihmota, když se nynější vesmír zkláda z hmoty?
Existuje jiný vesmír složený z antihmoty? (Lubomír Šerý)
Odpověď: Jako nejjednodušší vysvětlení mi připadá to, že v přírodě probíhají
všechny děje, které jsou možné. Elektron v exciovaném stavu může
skočit dolů, takže to dříve nebo později udělá. Při popisu mnoha dějů v
mikrosvětě neumíme mluvit o silách, máme jiné prostředky popisu (raději
mluvíme o pravděpodobnostech přechodu) - nevím, jaká síla pudí neutron
rozpadnout se na proton, elektron a neutrino.
Antihmota anihilovala s hmotou, takže dnešní hmota je výsledek asymetrie
mezi hmotou a antihmotou někdy dávno. Možná jo, nevím, jak se o tom
přesvědčit...
Dotaz: 1) Dá se využít samoindukce cívek v UPS zdrojích,
aby zajistily plynulý přechod na akumulátory?
2) Co působí na elektron v mg. poli?
Co je tedy "podstatou" magnetického pole.
Jak si mám představit spin elektronu, který s tím úzce souvisí?
Působí mg. pole i na jádra atomů?
Proč se elektrony neodtrhnou od jader v mg. poli?
(interpid)
Odpověď: 1) Odhadoval bych, že energie akumulovaná v cívkách stačí na kousek
periody (když člověk přemýšlí o funkci transformátoru), přesné časování
náběhu UPS je otázka konstrukční). Vaše otázka má ale velmi blízko k
jednomu typu UPS, viz. ferroresonant standby UPS na
http://www.pcguide.com/ref/power/ext/ups/types.htm , leccos dalšího najdete
na stránkách http://www.epanorama.net/links/psu_dcac.html.
2) Na elektron (jako jiný náboj) působí Lorentzova sila F = ev x B
(vektory, vektorový součin) a dále síla resp. moment odpovídající jeho
magnetickému momentu, souvisejícímu se spinem. Spin si těžko můžete
představit, neboť každá jeho klasická analogie jaksi kulhá, je to zcela
kvantový jev. Magnetické pole působí i na jádra atomů, dokonce se toho
často využívá (např. jaderná magnetická rezonance - NMR). Za jakých
podmínek by se mohly trhat elektrony od jader, zjistíte odhadem
magnetických polí, resp. jejich gradientu, které by k tomu byly potřeba.
Běžná magnetická pole elektrony netrhají.