FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 92 dotazů obsahujících »vakuu«

12) Nadsvětelná rychlost25. 02. 2009

Dotaz: Je mozne pri pouziti laseroveho ukazovatka ziskat vetsi rychlost nez je rychlost svetla? Za predpokladu ze budu svitit treba na metr vzdalenou plochu a opisovat kruznici tak vznikne nejaka obvodova rychlost a ted tu metr vzdalenou plochu posuneme treba o 10 km dal, ta rychlost na obvodu by mela byt vetsi si myslim... (Pavel Chobot)

Odpověď: Ano, je to možné. Existují v podstatě dva triky, jak překonat rychlost světla v daném prostředí:

1.) Lze se pohybovat rychleji než světlo v daném prostředí, ale pomaleji než světlo ve vakuu. například rychlost světla ve vodě je něco okolo 220 tisíc km/s. Nic nezakazuje vstřelit z okolí do vody třeba neutron rychlostí řekněme 250 tisíc km/s. Takto pohybující se projektil neporušuje žádná pravidla, neboť se pohybuje pomaleji než c (rychlost světla ve vakuu, tedy asi 300 tisíc km/s). Projektil smozřejmě bude prostředím bržděn za vzniku tzv. čerenkovova záření. Toto se běžně děje napřiklad v jaderných reaktorech.

2.) Nadsvětelnou rychlostí se (a tentokrát i libovolně rychleji než c) může pohybovat i cokoli, co ve skutečnosti není předmět, ale jen "zdání", "obraz". Ona stopa laseru (prasátko) na stěně se ve skutečnosti nepohybuje, jen se v různých chvílích odráží různé (=spolu nijek nesouvisející) fotony od různých (=opět na sobě nazávislých) míst na stěně. Podstatné je, že takto se nedá přenést informace nadsvětelnou rychlostí z jednoho místa na stěně na druhé - vždy se přenáší informace od laserového ukazovátka ke stěně (a to rychlostí c).

(Jakub Jermář)   >>>  

13) Vznášející se dutá koule21. 01. 2009

Dotaz: Dobrý den, rad bych pochvalil tento web, zaujal me na par hodin hned napoprve. Mam jeden dotaz. Pokud bychom vyrobili z nejakeho pevneho materialu napr. dutou kouli, a nasledne z ni odcerpali vzduch a vytvorili tak vakuum, bude se koule (pri zanedbani hmotnosti materialu z ktereho je vyrobena) vznaset?? Vakuum ma preci mensi hustotu nez vzduch? (Ondřej)

Odpověď: Ano. Pokud bude koule dutá a materiál jejího povrchu opravdu lehký, bude se vznášet vlivem hydrostatického tlaku vzduchu (který lze v tomto pohledu považovat za řídkou kapalinu). Technicky by ale nebylo vůbec jednoduché takovou kouli vyrobit. Vztlaková síla působící při zemském povrchu na kouli s průměrem 1 metr by byla přibližně 10 N, kontrukce by tedy nesměla být těžší než 1 kg. A to by přitom měla pokrývat celý povrch koule (přes 3m2) a odolávat rozdílu tlaku vně a uvnitř koule (105 Pa - to je jako by měla koule snést zatížení závažím o hmotnosti přes 7 tun). Teoreticky je tedy sice vaše úvaha správná, prakticky však při dnešním stavu techniky neproveditelná.

(Jakub Jermář)   >>>  

14) Závislost teploty vzduchu na nadmořské výšce17. 06. 2008

Dotaz: Zavislost teploty vzduchu na nadmorske vysce Dobry den, chtel bych se zeptat z jakeho duvodu klesa teplota vzduchu s nadmorskou vyskou, mereno do par metru na povrchem zeme. Kdyz vezmu v uvahu, ze teplo pravdepodobne vznika dopadem infracerveneho zareni na zemsky povrch, dale cim je nadmorska vyska vetsi, tim vice zareni dopadne na povrch a take skutecnost, ze vzduch je temer stejny tepelny izolant jako vakuum (tj. husty vzduch, ridky vzduch i vakuum by mely izolovat stejne) tak mi vychazi, ze by ta zavislost mela byt minimalni, ne-li dokonce opacna :) (Petr Helcl)

Odpověď: Teplota povrchu Země je určována dopadem krátkovlnného slunečného záření. Primárním zdrojem tepelné energie atmosféry je výměna tepla mezi zemským povrchem a atmosférou nad ní. Na teplotě vzduchu se dále, ale v poněkud menší míře, podílí absorbce infračerveného (tepelného) záření zemského povrchu. Oba tyto zdroje tedy v důsledku pusobí, že nejvíc tepla je atmosférou přijato v nižších vrstvách, kde je tím pádem její teplota v důsledku vyšší.

Dalo by se namítat, že teplý vzduch je lehčí než studený a proto by měl proudit do vyšších vrstev atmosféry. Tato úvaha je však špatná, poněvadž je to vzduch s menší hustotou, který by se měl takto chovat; a vzduch při povchu Země - navzdory faktu, že je teplejší - má hustotu vyšší, než vzduch ve vyšších vrstvách atmosféry, kde je nižší teplota kompenzována mnohem rychlejším exponenciálním poklesem tlaku.

(Peter Huszar)   >>>  

15) Kmitání a vlnění ve vakuu17. 06. 2008

Dotaz: Dobrý den, měl bych dotaz týkající se akustiky. Pokud bude zdroj vlnění umístěn ve vakuu, tak co se stane se vzniklou energií (vlněním)? Je jasné, že vlnění se nebude šířit. Ale jak říkam, jak se bude chovat vlnění? Bude snad soustředěné v jednom bodu? Nebo snad dokonce se energie vlnění přemění na tepelnou energii? Předem děkuji za odpověď. S pozdravem Petr Jirásek (Petr Jirásek)

Odpověď: Pro jednoduchost si představme obyčejnou ladičku:


Když do jejího dvojitého konce ťukneme, bude vydávat zvuk. Co se vlastně děje? Ťuknutím jsme způsobili, že se kunce ladičky od sebe rychle vzdalují a přibližují (tak rychle, že to očima nepostřehneme - jde to ale ukázat buď na zpomaleném filmovém záběru nebo třeba jednoduchým pokusem). Ťuknutím jsme tedy ladičce dodali energii. Také ze zkušenosti víme, že ladička po chvíli přestane znít, ptejme se tedy, kam se ta energie ztrácí. Důležité jsou zejména dva jevy. První je asi jasný - ladička při svém chvění naráží na vzduch, periodicky jej ve smém okolí svým chvěním/pohybem stlačuje a takto se měnící hustota vzduchu má charakter podélného vlnění šířícího se od ladičky. Prostřednictvím vlnění je ladičce postupně odebírána její kinetická/potenciální (deformační) energie uložená v jejím chvění, kmitání. Když řeknu totéž více lidově, tak ladičku "brzdí" vzduch, do kterého při kmitání naráží.

Druhou příčinou ztráty energie je pak cosi, co by se dalo nazvat jakési "vnitřní tření" v ladičce. To, že se chvěje, vlastně znamená, že se opakovaně trošku deformuje. A tato deformace a následná relaxace do původního stavu se neobejde (jako prakticky nic v libovolném látkovém prostředí) bez ztráty energie - ladička se přitom bude velmi velmi nepatrně zahřívat. Velmi jednoduše řečeno i v ladičče uvnitř materiálu dochází ke tření a ladička se tak při své deformaci v důsledku toho nemřitelně maličko zahřívá.

A jak to bude ve vakuu? První možnost odvodu energie - vlněním, zvukovými vlnami - zde není možná, nebude tedy nastávat. Druhá možnost se bude realizovat i ve vakuu. Výsledkum bude, že ladička nebude vyvolávat žádný slyšitelný zvuk (nemá se čím šířit), bude se jí tedy snáze kmitat/chvět. V důsledku vnitního tření v jejím materálu se ale bude pomalu nepatrně ohřívat na úkor svého chvění, až se její pohyb úplně zastaví. Kinetická/potenciální energie jejího chvěníse tedy plně přemění na vnitřní energii (laicky řečeno na teplo).

(Jakub Jermář)   >>>  

16) Sférická kuřata ve vakuu06. 05. 2008

Dotaz: Farmář má kuřata, která nenesou vejce, zavolá si proto na pomoc fyzika. Po pár dnech bádání přijde fyzik za farmářem a říka: "Našel jsem řešení! Ale platí pouze pro sférická kuřata ve vakuu." Můžete mi prosím vysvětlit, pro by měl být tento vtip vtipný? (pivrnec)

Odpověď: Většina fyzikálních situací je (mají-li být zkoumány důsledně a bez zjednodušování) velmi složitá a obtízně se s nimi pracuje. Ve fyzice proto velmi často zjednodušujeme situaci tak, že spoustu věcí zanedbáme, čímž myšlenkově vytvoříme podobnou, ale výrazně jednodušší situaci, s kterou už umíme počítat. Představte si třeba kouli - tu lze jednoduše popsat/vymezit v prostoru relativně jednoduchou nerovnicí (slovy by říkala to, že do koule patří všechno, co má od nějakého středu vzdálenost menší než daný poloměr). A teď si představte kuře. Dokážete nějak matematicky definovat, co to tako vé kuře je? Kde v prostoru začíná a kde končí? Inu velmi netriviální problém. Když bychom tedy chtěli s kuřady něco počítat, budeme se snažit situaci nějak zjednodušit. Buď z kuřete uděláme tzv. hmotný bod (když nás jenom zajímá, kde je, ale už nás nezajímá třeba, jak se otočí), tuhé těleso (když nás zajímá i to natočení, ale už ne deformace), ... častým zjednodušením ve složitější fyzice je pak tzv. sféricky symetrické těleso (typicky koule).

A proč ve vakuu? Nejjednodušeji se počítá, když nám ten výpočet nekazí žádné vlivy okolních těles, zkrátka když je okolonašeho předmětu zkoumání dokonalé nic... tedy vakuum.

(Jakub Jermář)   >>>