FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 40 dotazů obsahujících »elektronu«

17) Rychlost elektrického proudu23. 09. 2005

Dotaz:

Rád bych se zeptal, jaká je rychlost elektronu (toku elektronů) ve vodiči při průchodu elektrického proudu. Je tato rychlost rovna rychlosti světla a zda je tato rychlost závislá na velikosti el. proudu, resp. el. napěti, nebo je konstantní? Děkuji

(David)

Odpověď:

Elektrony se ve vodiči při pokojové teplotě chaoticky pohybují obrovskými rychlostmi (okolo 106 m·s-1). Tento pohyb je ale zcela chaotický a v celkovém součtu tedy nevytváří žádný výsledný proud. Pokud na vodič přiložíme napětí, začnou se elektrony (aniž by přitom ustaly ve svém chaotickém pohybu) pomaloučku sunout jedním směrem – říkáme, že teče proud. Rychlost tohoto posuvného pohybu (nazýváme ji driftová rychlost) je ale velice malá – asi jen 10-5 m·s-1, tedy o 11 řádů nižší než rychlost chaotického pohybu! Driftová rychlost je do určité míry závislá na velikosti přiloženého napětí.

(Jakub Jermář)   >>>  

18) Heisenbergův princip a nedokonalost měřících přístrojů23. 03. 2004

Dotaz: Dobrý den, zajímalo by mě zda-li Heisenbergův princip neurčitosti nevchází v potaz právě jen proto, že naší dostupnou technikou nejsme schopni měřit současně polohu a hybnost. Protože vyšleme-li např. v elektronovém mikroskopu proud elektronů, abychom pozorovali nějakou částici (velikosti blízké vlnové délce hmotné vlny elektronu), může docházet k předávání energie a tudíž pozorovaná částice obohacená o tuto energii se z původního místa "vystřelí" pryč. Děkuji (František)

Odpověď: K Heisenbegovu principu neurčitosti můžete dojít rozborem různých konkrétních situací, ve kterých se vždy ukáže (nezávisle na konkrétní technické realizaci), že měření souřadnice nebo hybnosti nějakým způsobem ovlivní druhou veličinu (samozřejmě v podmínkách mikrosvěta). Tato zkušenost je zabudována do teorie, která aspiruje na popis mikroskopických jevů - do kvantové mechaniky - a hraje v ní docela podstatnou roli. Když pak už máte v ruce kvantovou mechaniku, zjistíte, že podobně by se měly chovat i jiné páry veličin, například i dvojice složek momentu hybnosti, což znamená, že vlastně nemůžete přesně určit moment hybnosti jako vektor (tedy přesně současně určit jeho tři složky). To se zdá být překvapivé, ale tady teorie perfektně souhlasí s experimentem. Podívejte se do nějaké knihy o kvantové mechanice na diskusi měření. Jednoduše řečeno, každé měření nějak ovlivňuje měřený systém. To je v životě naprosto běžné, např. abych zjistil chuť dortu, musím ho kousek sníst. To jen v klasické fyzice se kocháme abstrakcí, že vliv měření je možné učinit zanedbatelně malým.
(J. Dolejší)   >>>  

19) Dirakův operátor a K-teorie14. 03. 2004

Dotaz:

Dirakův operátor je, prosím, operátor čeho?

(Marcel Steiner)

Odpověď:


1.) Diracova rovnice popisuje chování relativistické bodové částice se spinem 1/2 (elektronu, mionu...). Jde o diferenciální rovnici pro čtyřkomponentovou vlnovou funkci (tj. jde vlastně o čtyři svázané rovnice). Rovnici je možné upravit do tvaru, kdy všechno vytkneme před hledanou funkci, a to, co stojí před ní, se nazývá Diracův operátor:

, kde

     

Jedná se tedy o velmi formální objekt, důležité však je, že rovnice (a tedy i tvar Diracova operátoru) určuje fyzikální chování volné částice, lze s ní i (v upravené formě) lépe popsat spektrum atomu vodíku (i když souhlasu s experimentem dosáhneme až s kvantovou teorií pole:), rovnice určuje možné stavy zkoumaného systému. Pro zajímavost můžeme uvést jeden z možných tvarů Diracových matic:

Pro hlubší pochopení je třeba přečíst si příslušnou kapitolu z relativistické kvantové mechaniky.

(Mgr. Jiří Kvita)   >>>  

20) Elektrony v atomových slupkách13. 01. 2004

Dotaz: Není mi zcela jasné, jak si představit atom a jeho vrstvy. Elektrony ve vrstvách obíhají v několika orbitalech, které tvoří různé prostorové tvary. Jak je ale možné zařadit elektron do určité slupky, když se např. valenční elektron může vyskytovat i v blízkosti jádra při pohybu ve vyšších orbitalech? (Janicka)

Odpověď: Stručně: slupka = energetická hladina. Různé slupky v atomu nelze chápat jako nějaké části prostoru, kde by se elektrony výlučně nacházely, ale jako různé hladiny energie elektronů. Slupky K, L, M, ... jsou synonymem pro hlavní kvantové číslo n = 0, 1, 2, ..., které určuje energii elektronu na dané slupce (alespoň u atomu vodíku v nerelativistické kvantové mechanice, u složitějších atomů a v relativistickém popisu závisí energie též na vedlejším kvantovém čísle l)
Elektrony neobíhají v žádných vrstvách, mohou se nacházet takřka kdekoli kolem jádra. Orbital je vlastně funkce, která nám říká, jak často se elektron v různých místech nachází. Elektron obíhat, ve smyslu jak to známe třeba u planet, ani nemůže, neboť nemůžeme zároveň přesně říci, kde je a jakou má rychlost.
Máte zcela pravdu v tom, že i elektron ve valenčním orbitalu se může nacházet v blízkosti jádra. Je sice pravda, že s rostoucí energií se zvětšuje vzdálenost, ve je možné elektron nalézt, ale ten se stále může nacházet kdekoli. Není na tom nic divného, neboť při ionizaci se fyzicky "nesetře" nejvzdálenější elektron, ale dojde k vyražení elektronu, kterému dodaná energie stačí na opuštění atomu. Protože mají valenční elektrony nejvyšší energii nad základním stavem, tj. mají nejmenší vazbovou energii v atomu, je nejsnazší vyrazit právě je.
Na druhou stranu je také pravda, že s rostoucí energií se zvětšuje nejpravděpodobnější poloměr, kde je možné elektron nalézt. Uzavřené (tj. plně obsazené) slupky mají navíc symetrické elektronové hustoty, a tak o prostorovém rozložení elektronového oblaku kolem atomu rozhodují právě elektrony z vnějších nezaplněných slupek.
(Mgr. Jiří Kvita)   >>>  

21) Hmotnost vybité baterie07. 12. 2003

Dotaz: 1.) Dobrý den, zajímá mě, jestli nabitá baterie váží více, než když se vybije. Jestliže je hmota energií, tak by měla být baterie po vybití lehčí, ne?
2.) Pokud vím, tak ve Slunci se mění protony na neutrony za vzniku neutrin a elektronů. Měl jsem dojem, že právě z onoho náboje vznikne neutrino, jenže na internetu nějak nejsem schopen najít důvěryhodné informace o hmotnostech neutronu a protonu... (Vítězslav)

Odpověď: 1.) Čistě teoreticky to pravda je. Baterie je založená na elektrochemickém principu, energie se získává přechodem elektronů do stavů s nižší energií a podle speciální teorie relativity toto skutečně odpovídá poklesu hmotnosti vybité baterie.
Jsou zde ale dvě ale. Jednak je daný rozdíl jen těžko měřitelný (znáte vztah E=mc2, takže si snadno spočtete, o kolik by vybitá baterie měla být lehčí), jednak chemické a jiné procesy ve vybíjené baterii mohou výslednou změnu hmotnosti ovlivnit mnohem výrazněji (mám na mysli např. unikání některých látek z baterie nebo naopak, bude to sice zanedbatelné množství, ale pořád řádově větší než relativistický úbytek hmotnosti).
2.)
elektron 9.10938188(72) x 10-31 kg
proton 1.67262158(13) x 10-27 kg
neutron 1.67492716(13) x 10-27 kg
hm. jednotka u 1.66053873(13) x 10-27 kg
Není ale zcela jasné, jakou reakci máte na mysli. Proton se na neutron za vzniku protonu, neutrina a elektronu těžko změní např. kvůli zákonu zachování náboje. Patrně jste měl na mysli β+ rozpad, ve kterém vzniká neutron, pozitron a elektronové neutrino. Tento proces ovšem zjevně nemůže být zdrojem energie hvězd (to by muselo při rozpadu vznikat γ kvantum). Doporučuju nahlédnou do téměř libovolné astronomické knížky nebo encyklopedie zabývající se hvězdami, tam budou jaderné reakce popsány ürčitě přehledněji než by to bylo možné zde na pár řádcích.
(Jan Houštěk)   >>>