FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 4 dotazů obsahujících »kompenzována«

3) Planety a hvězdy02. 10. 2006

Dotaz: Jaký je rozdíl mezi hvězdou a planetou? (J. Neuschwaiz)

Odpověď: Hvězda je gravitačně stabilní plazmový kulovitý objekt zářící vlastním světlem. Gravitační síla je kompenzována tlakem látky a tlakem záření.

Planeta je těleso přibližně kulového tvaru, které obíhá kolem Slunce (hvězdy) po dlouhodobě stabilní eliptické dráze a které má dostatečnou hmotnost na to, aby vyčistilo okolí své dráhy. Tuto definici splňují planety, jak je známe ze základní školy, kromě Pluta. Pluto se od roku 2006 řadí mezi tzv. trpasličí planety.

Rozdílů mezi planetami a hvězdami je mnoho. Především hvězdy jsou mnohonásobně hmotnější než planety (např. Slunce je zhruba 300 000x hmotnější než Země). Kvůli obrovské hmotnosti (a s tím souvisejícím vysokým tlakem a vysokou teplotou uvnitř hvězd) probíhají ve hvězdách pochody vedoucí k uvolňování energie a hvězdy ji vyzařují do okolí, svítí. Naproti tomu planety vidíme zejména díky světlu, které odráží.

Dalším rozdílem je také chování hvězd a planet na obloze při jejich pozorování. Zatímco hvězdy (kromě Slunce) jsou od nás velice daleko a proto se jejich poloha (obraz) na noční obloze vůči ostatním hvězdám téměř nehýbe, planety svou polohu vůči ostatním hvězdám na noční obloze mění (jsou k nám totiž blíže, a tak je jejich pohyb patrný) - jako by po obloze putovaly. Nepřekvapí nás tedy, že slovo planeta pochází z řeckého πλανήτης (planétés), což znamená "poutníci".

(Jakub Jermář)   >>>  

4) Volný pád06. 09. 2002

Dotaz: Chtěl bych se zeptat na volný pád. Je pravda, že těleso pohybující se volným pádem bude nustále zrychlovat (dalo by se říci do nekonečna, resp. do jeho dopadu na zem)? Nebo nakonec (při dostatečně dlouhé dráze) dosáhne určité své maximální rychlosti, která bude záviset na odporu vzduchu a hmotnosti toho tělesa? (Vašek)

Odpověď: Samozřejmě to zrychlování bude dosti rychle hasnout. Při skoku parašutysty už asi za 15 sekund bude rychlost asi 200 km/h a odpor vzduchu tak velký, že padá dále rovnoměrně. U pouťového balónku je to zrychlování jen asi sekundové, u kapičky mlhy jen setiny sekundy. Také kapky deště zrychlují jen několik málo sekund a pak padají rovnoměrně, gravitace je zcela vykompenzována odporem vzduchu. Kdybyste hodil olověnnou kuličku z letadla, které letí 10 km vysoko i ona by už dosti dlouho před dopadem ustálila svou rychlost, protože odpor vzduchu roste s rychlostí velmi rychle, v tomto případě s její druhou mocninou. Proto také v reálném případě neplatí, že všechna tělesa padají stejně. Odpor vzduchu hraje důležitou roli. Neplatí ani (když bereme odpor vzduchu v potaz), že těžší těleso padá větší ustálenou rychlostí. Kdybychom z toho letadla hodili olověnnou 100 g těžkou kuličku společně s kilovou peřinou, tak ta lehčí kulička bude mít větší ustálenou rychlost, než ta těžší peřina. Někdy tedy padá těžší těleso rychleji, někdy obráceně je rychlejší to lehčí.
Nakonec jen trochu nereálná poznámka. I kdyby vše probíhalo ve vzduchoprázdnu a hnací síla by byla stále stejně velká, stejně by rychlost nerostla do nekonečna. Jakmile by se začala blížit rychlosti světla, růst by se začal zpomalovat, protože by rostla relativisticky hmotnost kuličky. Nejvyšší rychlost, ke které by se to v tomto scifi pokusu blížilo, ale nedosáhlo, by byla rychlost světla.
(M.Rojko)   >>>