Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!
nalezeno 1493 dotazů
82) Pokus se svíčkou
12. 10. 2009
Dotaz: P.T. Prosím o vysvětlení pokusu, který se běžně dělá v hodinách fyziky
základní školy. Do širší nádoby s vodou se umístí hořící svíčka, a
přiklopí se jinou skleněnou nádobou, pod kterou potom stoupne hladina.
Dětem se tím demonstruje, že hořením se spotřebuje kyslík. Ten ale
nemůže zmizet, pravděpodobně zreaguje na kysličník uhličitý, který má
tentýž objem jako kyslík. Co je tedy příčinou stoupnutí hladiny? Moje
vysvětlení je, že plamen svíčky ohřeje vzduch pod vrchní nádobou, ten se
po zhasnutí svíčky ochladí a smrští. Stoprocentně jist si ale nejsem.
Děkuji předem za odpověď. (Tomáš Brož)
Odpověď: Ano, máte pravdu. Při hoření svíčky se vzduch ohřeje, rozepne a část jej zpod sklenice vybublá pryč. Při následném ochlazení (když svíčka zhasne) se vzduch opět smršťuje na původní objem, ale je jej méně (o tu vybublanou část), takže se do sklenice nasaje o voda z nádoby pod ní.
Dotaz: Co je to kouř? Co je to vidět při nedokonalém spalovaní dřeva na ohništi
(bez plamene) a jak je možné, že "to" zmizí při lepším
spalovaní (s plamenem). Poddotaz: jsou některé běžné plyny viditelné,
nebo se jedná vždy o aerosol (pevná či kapalná látka rozptýlená v
plynu)? (Ludvík Trnka)
Odpověď: Kouř jsou pevné částečky rozptýlené v plynu, takže při nedokonalém spalování
při táboráčku jde o saze, popel a další pevné zbytky unášené vznikajícími
plyny. Při vyšší teplotě a lepším přístupu kyslíku se řada nespálených
zbytků zoxiduje až na plyny a nepřispívá tedy ke vzniku kouře.
Další možností vzniku kouře je reakce dvou plynů, při které vzniká pevná
látka - například setkají-li se (neviditelné) páry chlorovodíku a amoniaku,
reagují za vzniku pevného chloridu amonného, což se projeví jako vznik
bílého kouře. Video této reakce je například na serveru YouTube:
http://www.youtube.com/watch?v=pSarGx8Uank&feature=related
V baňce vzniká reakcí chloridu se silnou kyselinou plynný chlorovodík, ten
je postanní trubičkou odváděn nad kádinku s roztokem amoniaku, z níž se
uvolňuje plynný amoniak. Jakmile se oba plyny u ústí kádinky setkají, vzniká
bílý kouř, tedy mikroskopické částečky pevného chloridu amonného rozptýlené
ve vzduchu.
Některé plyny jsou barevné a můžeme je vidět (při dostatečné koncentraci).
Běžným příkladem je červenohnědý oxid dusičitý, vznikající při některých
reakcích z kyseliny dusičné. Skutečně se může jevit jako "hnědý kouř", ale
narozdíl od pravého kouře neobsahuje žádné pevné částečky, které by se např.
mohly usazovat na filtru. Podobně zbarvený je i brom v plynném skupenství,
chlor je při vyšší koncentraci pozorovatelný jako žlutozelený.
Dotaz: Proč se v elektrických přenosných radiátorech používá jako náplň olej
a ne voda? (Luboš Mužík)
Odpověď: Domnívám se, že jedním z důvodů je menší tepelná kapacita oleje - radiátor tak spotřebuje méně energie na samotné zahřátí oleje a hřeje již dříve po zapnutí (ale také rychleji chladne po vypnutí).
Dotaz: V dětství mě napadla jedna myšlenka a ta se mi vrací do dnes a stále na ni
neznám odpověď.Prosím o váš názor či vysvětlení.A to: kdybychom
vyrobili takovou cívku s dutým jádrem,které by mělo průměr jen deset
milimetrů a délku treba 50mm samotná cívka by byla velmi velká a nám by se
podařilo v jejím středu vyvinout magnetickou indukci řekněme třeba
100T.Ale to,jak by vypadala a jestli je možné takovou vyrobit mě
nezajímá.zajímalo by mě,jestli tak vysoká hodnota magnetické indukce v tak
malém prostoru by byla viditelná okem a co dle vašeho předpokladu by se
stalo s hmotou vloženou do jejího středu,napríklad nějaký kov,nebo tř eba
i něco organického. Podle mého mínění by došlo k rozpadu pokusné hmoty
na částice.(Mohl by se tak likvidovat odpad).těším se na vaši odpověď. (expert)
Odpověď: Cívky s magnetickým polem o magnetické indukci B = 100 T skutečně existují.
Není to dokonce ani horní mez dosažitelného pole. Jsou to však pulzní cívky
z měděných desek chlazené kapalným dusíkem. Pole se v nich vytváří krátkým
impulzem proudu o tisících ampérů vybitím veliké baterie kondenzátorů.
Takovou laboratoř je možno uvidět například v Toulouse ve Francii. Impulz
pole narůstá po zlomek vteřiny a doznívá něco přes vteřinu. Veškerá měření
se musí zaznamenat v této době. Extrémně vysoká pole se dají získat stejným
typem cívky, která se navíc v okamžiku proudového impulzu pomocí válcové
výbušné nálože smrští na minimální průřez a tím se indukční tok maximálně
zkoncentruje a magnetická indukce se znásobí. Samozřejmě se tím jak cívka
tak i měřené zařízení zničí a začíná se od začátku. Sám jsem takové zařízení
nikdy neviděl, neznám další podrobnosti. Stacionární pole supravodivých
solenoidů dnes dosahují až k B = 20 T, pro větší pole se staví hybridní
cívky, uvnitř supravodivého solenoidu je ještě chlazená měděná cívka, kterou
se přidá pole ještě nad hodnotu, kterou i ty nejlepší supravodiče již
nesnesou. Jaké je rekordní pole takovéhoto monstra přesně nevím, bude to
alespoň B = 25 T.
Nebyl pozorován žádný jev, o kterém mluvíte. Silový účinek pole je vždy
vázán na prostorovou změnu magnetické indukce F = M.dB/dx, M je magnetický
moment objektu.. Můžete si sám vyzkoušet, že feromagnetický předmět je do
cívky vtahován u jejího okraje, kde pole se vzdálenosti od cívky klesá.
Jakmile je předmět uvnitř cívky, kde je pole téměř homogenní, síla na něj už
nepůsobí. V polích silného supravodivého solenoidu se dá předvádět levitace
slabě magnetických (paramagnetických) objektů, může to být kapka vody nebo i
žabička. Naleznete jistě obrázky i animace na internetu. Síly, kterými jsou
v hmotě částice drženy pohromadě, nemohou být překonány magnetickým pole.
Magnetické pole také člověk nemůže uvidět, ani jinými smysly pocítit. Jediný
reálný účinek na lidský organismus má střídavé magnetické pole využívané i k
léčení (diatermie) především tepelnými projevy.
Dotaz: Chcel by som sa spýtať ako sa zisťuje teplota plazmy v zariadeniach typu ITER
alebo tokamak. Vďaka. (Štefan)
Odpověď: Nejsem odborník na plazmu, ale obecně lze horké řídké médium
diagnostikovat opticky (též rentgenově atdd.) okénky či přímo fyzicky
sondami, např. Langmuirovou sondou, která měří proud tekoucí mezi
elektrodami vloženými do pazmatu. Z velikosti proudu a jeho změn v
závislosti na přiloženém napětí lze měřit teplotu eletronového plynu a
mnohé další charakteristiky plazmatu.