FyzWeb  odpovědna

Zaujal vás nějaký fyzikální jev? Nevíte si rady s jeho vysvětlením? Neváhejte a napište nám svůj dotaz!


nalezeno 40 dotazů obsahujících »elektronu«

15) Elektron25. 01. 2006

Dotaz: Dobrý den, jaká je hmotnost elektronu, jeho rozměry (řádově) a kolik energie je potřeba k jeho vytvoření? Jde ta energie potřebná pro jeho vytvoření vypočítat ze vzorce E=m*c2 (to c je na druhou, ale to by vám asi došlo...) nebo mám úplně mylné představy? Děkuji. (J.Beneš)

Odpověď: Hmotnost elektronu je me=9,11·10-31kg (bavíme se o tzv. klidové hmotnosti, rychle se pohybující elektrony mohou mít hmotnost v souladu s teorií relativity vyšší). Energii potřebnou k vytvoření elektronu pak lze skutečně spočítat dle vzorce E=me·c2 a vyjde nám přibližně 8,1·10-14J. Fyzici zabývající se jadernou a částicovou fyzikou dokonce vyjadřují hmotnosti částic právě prostřednictvím energií, které jsou potřeba pro jejich vytvoření. Z praktických důvodů pak ale nepoužívají jako jednotku J (Joule; je totiž neprakticky velká) ale eV (elektronvolt), běžně tedy řeknou, že hmotnost elektronu je 511 keV (511 kiloelektronvoltů).

S rozměry elektronu je to zapeklitější, neznáme je totiž přesně. Z experimentů ale vyplývá, že rozměry elektronu jsou určitě menší než 10-19m.

(Jakub Jermář)   >>>  

16) Rychlost urychleného elektronu13. 12. 2005

Dotaz: Na jakou rychlost se urychlí "stojící" elektron konkrétním napětím (např.500V)? Moc děkuji. (Honza)

Odpověď: Elektron získá kinetickou energii rovnou součinu jeho náboje a urychlujícího napětí. Pro odhad jeho rychlosti můžeme při nižších rychlostech zanedbat relativistické efekty a počítat dle vzorce EK = 1/2·me·v2 = e·U , odkud úpravou vyjádříme rychlost elektronu v. Po dosazeni U = 500V, e = 1,6·10-19C a me = 9,11·10-31kg dostaneme výslednou rychlost okolo 13·106m·s-1. Zde si ještě zkontrolujeme, že tato rychlost je výrazně menší než rychlost světla (což je) a že zanedbání relativistických efektů tedy bylo oprávněné.
(Jakub Jermář)   >>>  

17) Rychlost elektrického proudu23. 09. 2005

Dotaz:

Rád bych se zeptal, jaká je rychlost elektronu (toku elektronů) ve vodiči při průchodu elektrického proudu. Je tato rychlost rovna rychlosti světla a zda je tato rychlost závislá na velikosti el. proudu, resp. el. napěti, nebo je konstantní? Děkuji

(David)

Odpověď:

Elektrony se ve vodiči při pokojové teplotě chaoticky pohybují obrovskými rychlostmi (okolo 106 m·s-1). Tento pohyb je ale zcela chaotický a v celkovém součtu tedy nevytváří žádný výsledný proud. Pokud na vodič přiložíme napětí, začnou se elektrony (aniž by přitom ustaly ve svém chaotickém pohybu) pomaloučku sunout jedním směrem – říkáme, že teče proud. Rychlost tohoto posuvného pohybu (nazýváme ji driftová rychlost) je ale velice malá – asi jen 10-5 m·s-1, tedy o 11 řádů nižší než rychlost chaotického pohybu! Driftová rychlost je do určité míry závislá na velikosti přiloženého napětí.

(Jakub Jermář)   >>>  

18) Heisenbergův princip a nedokonalost měřících přístrojů23. 03. 2004

Dotaz: Dobrý den, zajímalo by mě zda-li Heisenbergův princip neurčitosti nevchází v potaz právě jen proto, že naší dostupnou technikou nejsme schopni měřit současně polohu a hybnost. Protože vyšleme-li např. v elektronovém mikroskopu proud elektronů, abychom pozorovali nějakou částici (velikosti blízké vlnové délce hmotné vlny elektronu), může docházet k předávání energie a tudíž pozorovaná částice obohacená o tuto energii se z původního místa "vystřelí" pryč. Děkuji (František)

Odpověď: K Heisenbegovu principu neurčitosti můžete dojít rozborem různých konkrétních situací, ve kterých se vždy ukáže (nezávisle na konkrétní technické realizaci), že měření souřadnice nebo hybnosti nějakým způsobem ovlivní druhou veličinu (samozřejmě v podmínkách mikrosvěta). Tato zkušenost je zabudována do teorie, která aspiruje na popis mikroskopických jevů - do kvantové mechaniky - a hraje v ní docela podstatnou roli. Když pak už máte v ruce kvantovou mechaniku, zjistíte, že podobně by se měly chovat i jiné páry veličin, například i dvojice složek momentu hybnosti, což znamená, že vlastně nemůžete přesně určit moment hybnosti jako vektor (tedy přesně současně určit jeho tři složky). To se zdá být překvapivé, ale tady teorie perfektně souhlasí s experimentem. Podívejte se do nějaké knihy o kvantové mechanice na diskusi měření. Jednoduše řečeno, každé měření nějak ovlivňuje měřený systém. To je v životě naprosto běžné, např. abych zjistil chuť dortu, musím ho kousek sníst. To jen v klasické fyzice se kocháme abstrakcí, že vliv měření je možné učinit zanedbatelně malým.
(J. Dolejší)   >>>  

19) Dirakův operátor a K-teorie14. 03. 2004

Dotaz:

Dirakův operátor je, prosím, operátor čeho?

(Marcel Steiner)

Odpověď:


1.) Diracova rovnice popisuje chování relativistické bodové částice se spinem 1/2 (elektronu, mionu...). Jde o diferenciální rovnici pro čtyřkomponentovou vlnovou funkci (tj. jde vlastně o čtyři svázané rovnice). Rovnici je možné upravit do tvaru, kdy všechno vytkneme před hledanou funkci, a to, co stojí před ní, se nazývá Diracův operátor:

, kde

     

Jedná se tedy o velmi formální objekt, důležité však je, že rovnice (a tedy i tvar Diracova operátoru) určuje fyzikální chování volné částice, lze s ní i (v upravené formě) lépe popsat spektrum atomu vodíku (i když souhlasu s experimentem dosáhneme až s kvantovou teorií pole:), rovnice určuje možné stavy zkoumaného systému. Pro zajímavost můžeme uvést jeden z možných tvarů Diracových matic:

Pro hlubší pochopení je třeba přečíst si příslušnou kapitolu z relativistické kvantové mechaniky.

(Mgr. Jiří Kvita)   >>>